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Abstract. Distributed system is a group of decentralized interacting executers. 

Distributed algorithm is the communication protocol for a distributed system 

that transforms the group into a team to solve some task. Multiagent system is a 

distributed system that consists of autonomous reactive agents, i.e. executers 

which internal states can be characterized in socio-human terms Believes (B), 

Desires (D), and Intentions (I). Multiagent algorithm is a distributed algorithm 

for a multiagent system. 

In this paper we consider two examples of multiagent algorithmic problem 

in Social Software context. The first example is called Rational Agents at the 

Marketplace or Cut Cake
1
 Problem, the second example is called Mars Robot 

Puzzle. Some multiagent algorithms for these problems were previously sug-

gested and verified by N. Garanina and N. Shilov in 2011, some results about 

information exchange were studied by A. Bernstein also in 2011. This time we 

address a social issue of agent anonymity and privacy in these algorithms and 

also enforce previous results related to information exchange. 
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1 Multiagent systems and algorithms 

Many multiagent algorithmic problems can be considered in a Social Compu-

ting/Software context, a relatively new research paradigm, the essence of which is as 

follows. In the modern world many social procedures and processes have algorithmic 

nature, they look like computing by groups “people” or agents. Therefore, these pro-

cedures can be represented in a semiformal pseudocode, their requirements and prop-

erties can be (semi)formaly specified. Then the properties of these procedures can be 

validated by means of formal theories for algorithm/program analysis and verifica-

                                                           
1 Sic! “Cut Cake”, not “Cake Cutting”. 
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tion. Well, the results of the formal analysis or verification can be interpreted in social 

terms and may have social significance. And although about multiagent systems and 

Social Computing/Software started talking in the last two decades, but it is possible to 

consider as the first example of research in these paradigms the famous Cake-Cutting 

Problem [4] studied by a group of Polish mathematicians, Hugo Steinhaus, Bronislaw 

Knaster and Stefan Banach in late 1930s. 

Distributed system is a group of decentralized interacting executers. Communica-

tion in a distributed system is said to be fair, if any executer that wants to communi-

cate with another one will eventually communicate. Distributed algorithm is the 

communication protocol implementing a distributed system to solve some task [15]. 

Multiagent system is a distributed system that consists of agents
2
. An agent is an au-

tonomous rational reactive object (in Object Oriented sense) whose internal state can 

be characterized in terms of agent's Believes (B), Desires (D), and Intentions (I). 

Multiagent algorithm is a distributed algorithm that solves some problem by means of 

cooperative work of agents. 

Agent's Beliefs represent its “knowledge” about itself, other agents and an “envi-

ronment”; this “knowledge” may be incomplete, inconsistent, and (even) incorrect
3
. 

Agent's Desires represent its long-term aims, obligations and purposes (that may be 

controversial). Agent's Intensions are used for a short-term planning. Reactivity 

means that every agent can change its Believes, Desires, and Intentions after commu-

nication with other agents and environment, but every agent is autonomous, i.e. any 

change of its Believes, Desires and Intensions depends on the agent itself, and a 

change can’t be decreed from outside. Agents of the described kind are called BDI-

agents [17]. 

A rational agent has clear “preferences” and always chooses the action (in feasible 

actions) that leads to the “best” outcome for itself; a bounded rationality is “decision 

making” limited by the cognitive and deductive abilities of agents or other constrains 

(e.g. amount of time they have to make decisions). 

An intelligent agent [16] is the agent, with not an imperative deterministic pro-

gram, but declarative non-deterministic logic program consisting of clauses in the 

form                                          , where         - logical 

conditions on the local variables and communication channels of the agent, 

              - construction for parallel branching,                         - 

actions like assignments to local variables, reading/writing data from/to input/output 

channels.  

2 Case Studies: agents at the marketplace and on Mars 

First let us discuss in brief the following problem that is called in [13] Rational 

Agents at the Marketplace (RAM-problem). 

 

                                                           
2 i.e. executers are agents 
3 According to Plato, knowledge true belief, i.e. a judgment that has a validation.  



There are     customers (buyers) and the same number of goods at the mar-

ketplace, each good has individual price for different buyers. Every buyer 

         is a rational agent, who wants to buy exactly one good, he knows in 

advance his price-list                       (as a private information), 

but is not aware about any price offer to any other customer. All buyers are ra-

tional agents that can communicate with other buyers in P2P-manner, negoti-

ate and flip (change individual purchase intensions) so that all flips must al-

ways be rational for participating agents. Since all buyers are rational agents, 

each buyer          confesses that time is money and has an individual “fi-

ne”      for every unproductive negotiation with any other buyer. However, 

each buyer can make a deal (or purchase) if and only if he (the buyer) knows 

that no other customers will ever attempt to buy this good. 

Problem: Design a multiagent algorithm, which allows each buyer sooner or 

later to purchase some unit of good. 

RAM-problem is illustrated on the Fig.1 below. Here we have 3 buyers (depicted 

to the right) and three goods (depicted to the left), each buyer knows his own individ-

ual price-list, but also has his current intension to buy a particular good. (Current 

intensions are represented by red arrows.) Several buyers may have intension to by 

the same good. Conflict of intensions is depicted by lightning on the Fig. 1. RAM-

problem asks us to resolve conflicts of this kind. 

 

 
 

Fig. 1 – Rational agents on the Marketplace 



 

RAM was solved in [13] for the agents presented by imperative programs. It “grew 

up” from the following problem considered in [3][12] and called Mars Robot Puzzle 

(MRP). 

 

There are     autonomous agents (“robots”) and the same number of shel-

ters in general position
4
 on a plain part of Mars. Locations of all shelters are 

fixed and known to all robots. Each robot knows a shelter that was assigned to 

it from the very beginning
5
, its own  distances to all shelters, know all other ro-

bots, but doesn't know locations of any other robot. Robot can communicate 

with each other in P2P-manner and every pair of communicating robots may 

swap their shelters. All robots have to select individual shelters to move in by a 

straight route
6
. Definitely, robots should not collide (it means that their routes 

should not intersect). Hence, every individual robot can move to a shelter only 

when it knows for sure that it will not collide with any other robot on the route. 

Problem: Design a multiagent algorithm that guarantees that every robot will 

eventually know that its route to the selected shelter does not intersect with 

routes of other robots. 

 

MRP is illustrated on the Fig.2 below. Here we have 3 robots (enumerated by 

numbers) and three shelters (indexed by letters), each robot knows his own individual 

location, but also has his current intension to go into a particular shelter (depicted by a 

red arrow). It is assumed that from the very beginning all robots have individually 

assigned shelters, and that robots can swap shelters in pairs; it implies that all robots 

always have disjoint intensions (current shelters), but routs to these shelters may in-

tersect. Conflicts of intensions are depicted by lightning on the Fig. 2. MRP is to re-

solve conflicts of this kind. One can observe that RAM-problem can be considered as 

a “preprocessor” for MRP: MRP assumes that robots have individual shelters assign-

ments, but RAM is about how agents can make an assignment of this type. 

MRP multiagent interpretation of the Dijkstra problem [14]: Design a algorithm 

that connects by straight segments n black (“robots”) and n white (“shelters”) points 

on a plain so that segments don’t intersect. But MRP can be considered also as a spe-

cial geometric interpretation the assignment problem in Graph Theory, or to the con-

vex hull problem in Combinatorial Geometry. At the same time MRP is closely relat-

ed to the path-planning problem [8]. 

 

                                                           
4 i.e. none three objects lie on a straight line 
5 The initial assignment is individual, i.e. a one-to-one assignment. 
6 Assume that there are no obstacles like rocks, holes, etc. between any robot and any shelter. 



 
Fig. 2 – Mars Robot Puzzle 

3 How to solve RAM and MRP 

The difference between RAM and MRP is manifold. First, agent rationality in RAM 

can be represented numerically by their price-lists, while in MRP agents do not care 

about numbers at all, but about safety on their routs to shelters. Next, MRP has a clear 

geometric interpretation, but it is not clear from the very beginning, whether any in-

tersection-free set (of routes) exists, and, hence it is not obvious that the problem has 

a solution. In contrast, RAM has no a geometric interpretation, but it is seems a priori 

that some protocol may exist. 

Nevertheless, from the algorithmic point of view, RAM and MRP are closely relat-

ed, since their solutions belong to the class of so-called wave algorithms [15]. This 

class of distributed algorithms is characterized by the following general properties. 

 Termination: all agents complete their work within a finite time. 

 Decision: each agent has the final decision. 

 Dependence: the decision of each agent influences all agents. 

Papers [3][12] presented and proved imperative wave algorithms SWP (SWaP-

ping) for Mars Robot Puzzle, and paper [13] presented proved imperative wave algo-

rithms LSM (Look for Salesman) for Rational Agents at Marketplace. Individual 

beliefs of every agent in both algorithms are represented by two integer counters NC 

and CF:  



 current value of NC (Number of Conflicts) is an upper estimation of the number of 

agents with whom the agent may have a conflict of intensions right now; 

 current value of CF (Conflict Free) is a lower estimation of the number of agents 

that have no conflicts at all. 

An agent believes that it doesn’t have conflicts with anybody when NC=0; it believes 

that there is no any conflict in the system when NC=0 and CF=        (i.e. it 

checks twice that all other agent also believe that they don’t have conflicts.) 

Agent part in both algorithms LSM and SWP follows: 

DO CF:=0; 

DO NC       ;  

contact all other       agents in turns and with each 
partner  

DO IF no conflict with a partner THEN NC:=NC-1 

       ELSE resolve the conflict and NC        
UNTIL NC=0;  

//i.e. the agent believes that it is conflict-free 

contact all other       agents in turns and with each 
partner  

DO IF no conflict with a partner and the partner believes 

it is conflict-free  

       THEN CF:=CF+1 

       ELSE resolve the conflict, NC        and CF:=0; 
DO IF no conflict with a partner and the partner believes 

it is conflict-free  

       THEN CF:=CF+1 

       ELSE resolve the conflict, NC        and CF:=0 

UNTIL CF=         
//i.e. the agent believes that system hasn’t conflicts. 

System part in both algorithms LSM and SWP is to provide fair communication, i.e.  

any time when an agent would like to communicate with another agent they eventual-

ly will communicate. 

LSM algorithm uses the following game-theoretic approach [1] for conflict resolu-

tion between two agents. Let   and   be two agents that have intension to buy one and 

the same good  . Each agent   in       has two strategies in negotiations – to      

for the good   or to       to the next good in the private price-list. Let    and    be 

individual fines of   and   for non-productive negotiations (when both either bid or 

flip simultaneously), and let    and    be their individual losses (if they flip to the 

next goods in their price-lists). Remark, that    and    as well as    and    are non-

positive. Then let us consider the following strategic game: 

 

            
                 

                  

  

This game has no Nash equilibrium in pure strategies, but we may solve the game 

mixed strategies. Let agent   play strategy      with probability   and strategy       



with probability      , and agent   play strategy      with probability   and strat-

egy       with probability      . Then we have two equations [1]: 

 
                           

                           
  

It implies that  

 
 
 

 
   

  
        
  

  
  
        
  

  

Recall that              ,        . Hence 

 
            
            

  

or           and          . In other words: the absolute value of 

agent’s fine can’t be 0 and less then the absolute value of its loss when it flips to the 

next good in the price-list. 

The following proposition about LSM is proved in [13]. 
Proposition 1.  

If a multiagent system with fair communication consists of      buyers each of 

which would like to buy a single of   goods, it is common knowledge (in the sys-

tem) that all buyers are agents executing algorithm LSM, and for every buyer b its 

fine      and its absolute value isn’t less than the maximal absolute value of 

itsloss when it flips to the next good in the price-list,  

then every agent will eventually terminate, and upon termination its beliefs that it 

hasn’t conflicts and the system is conflict-free are true. 

 

SWP algorithm resolves agent conflicts much easier. Let   and   be two robots,   
and   be their intentional shelters. Then let   and   to swap shelters   and  , if 

                           . The following proposition is proved in [3][12]. 
Proposition 2. 

If a multiagent system with fair communication consists of       robots each of 

which knows some initial individual shelter, it is common knowledge (in the sys-

tem) that all robots are agents executing algorithm SWP and all robots and shel-

ters are in general position,  

then every robot will eventually terminate, and upon termination its beliefs that its 

straight rout to selected shelter is safe
7
 and the system is conflict-free are true. 

 
These two propositions solve RAM and MRP problems, but under assumption of 

fair communication. This assumption constitutes that if anyone of agents ever wants 

to communicate with any another agent, sooner or later the communication session 

between them will surely take place. In this paper we won't discuss how to guarantee 

                                                           
7 i.e. hasn’t intersections with routs of other robots 



this fairness, but we would like to point to one option that solves the problem: one can 

assign priorities to agents and allow seniors to initiate communication with juniors. 

Another drawback of the algorithms LSM and SWP is their imperative nature. 

And, therefore, agents, guided by these algorithms are rational, but have not yet be-

come intelligent. 

4 Social Software and Agents 

At the same time RAM is closely related to the classic Cake Cutting Problem (CC-

problem), also known as Fair Division Problem [4] that has been introduced by a 

group of Polish mathematicians, Hugo Steinhaus, Bronislaw Knaster and Stefan 

Banach. 

The CC-problem is to divide an infinitely dividable resource (“cake”) in such a 

way that all recipients believe that they have received a fair. Special cases of the prob-

lem are proportional and envy-free division. A division is said to be envy-free if each 

recipient believes (at the moment of reception) that according to his measure no other 

recipient has received more than he has of a heterogeneous cake; in contrast, a propor-

tional division deals with a homogeneous cake where each of m recipients have to 

receive exactly     of the cake's volume. 

To explain connections between RAM- and CC-problems, it is enough to reformu-

late a RAM as follows: 

 
The cake is cut on     pieces, which should be divided among     recipi-

ents. Each recipient in          is the intelligent rational agent to whom ex-

actly one of piece of a cake is necessary, and it knows the scale of value of 

pieces                    . All recipientscan (in P2P-manner) communi-

cate, negotiate, make concessions, flip (individual change) their pieces of a 

cake so that all flips must be rational. However, each recipient can buy the 

chosen piece if and only if he/she knows that nobody else will ever apply for 

this piece of cake. 
Problem: Design a multiagent algorithm for recipients, which will allow each 

agent sooner or later to get a piece of cake. 

 
Differences between RAM and CC problems are evident: in CC-problem a cake is 

an infinitely dividable resource, while in RAM-problem a “resource” has been cut 

already onto “salesmen”; solutions of the CC-problem may be sequential, while solu-

tions (if any) of RAM must be multiagent (i.e. distributed, parallel and concurrent) by 

the problem statement. But even multiagent solution of CC-problem can be unsuitable 

for a RAM-problem. For example, the classical envy-free solution of CC-problem for 

two participants consists in the following: one agent cuts the cake so that any of two 

pieces will satisfy him/her, and the second chooses from these two pieces which satis-

fies her/him. As it is easy to see if the cake is already cut on two pieces, and both 

agents wish the same piece, the system of these two agents will get to the deadlock. 



But in spite of these differences, RAM and CC problems have something in com-

mon since they both are examples of a new research paradigm of Social Software [9].  

In the modern world very many social requirements and procedures have algorith-

mic character. These requirements can be written as (semi-)formal specifications and 

procedures – software (in a pseudocode). Then the properties of these procedures can 

be analyzed and verified by formal methods. Well, the results of the formal analysis 

or verification may be interpreted in socially significant terms. And though about 

Social Software started talking only in a XXI century, but it is possible to consider as 

the first example of application of this paradigm research of the Cake Cutting Prob-

lem by H. Shteinhaus, B. Knaster and S. Banach.  

5 Privacy in RAM-problem 

Let us assume that the number n of agents and all distances are integer numbers pre-

sented by fixed finite number of digits in any (fixed) position notation. Note that in 

this case the meaning of SWP protocol consists in computation of n integer functions 

of individual price lists. By the theorem of Oblivious Transfer [5],[6],[10],[17], there 

is a way to compute this function, in which the participants will not send full infor-

mation about their distances to each other. Unfortunately, a direct description of this 

method is a cumbersome. Fortunately we can construct a protocol of swapping, in 

which the participants will not disclose to each other information about distances 

thanks to our assumption about fixed size of data representation (i.e. number of agents 

and individual prices): due to this assumption all functions to be computed are Boole-

an functions of Boolean arguments. The construct presented below is some modifica-

tion of construction presented in [2]. 

Assume we have to compute a Boolean function   such that some part of its ar-

guments is known to the agent  , and the other part – to the agent  . Thus partici-

pants don't want to open each other information on their individual data. Assume that 

function   is written using conjunctions &, negations   and exclusive disjunction ⨁. 

Let us represent the function   by logic scheme where inputs are arguments, and the 

output is the function value. We will calculate the values in the nodes of the scheme, 

but not completely: each node   will receive the bits    and    from agents A and B 

such that the value of a node is equal to   ⨁  , with bit    known only to   and bit    
only  . For this purpose agents proceed as follows.  

For each input bit of   each agent generates two random bits   and   such that 

 ⨁   , and sends one of these bits to his partner. Thus, the input data are divided. 

Now it was necessary to describe how to compute the results of Boolean opera-

tions. Situation with negation and exclusive disjunction is simple: to compute result of 

negation, it is necessary to negate the corresponding bit of the agent; to compute re-

sult of exclusive disjunction each agent has to compute exclusive disjunction for 

his/her part.  

Conjunction is more complicated. Let on the input there are bits of          and 

  , and it is required to receive such bits   and   that  ⨁     ⨁       ⨁   . As 

excluding    and conjunction is an addition and multiplication on the modulo 2 re-



spectively, we have                                        . 
As       is known to agent  , and        - the agent  , they have to compute bits 

  and   such that                            ; then it is possible to put 

                    and                    . 
Bits   and   may be computed using the following protocol. Agent   generates a 

random bit  . Then he believes                          ,            
       ,                      . With data transfer protocol “blindly 1 of 4” 

(oblivious transfer) [5],[6],[10],[17] agent   knows value of       . Now it is possible 

to put     and         . 

The above arguments prove the following proposition. 
Proposition 3. Let us assume that the number n of agents and all distances are inte-

ger numbers presented by fixed finite number of digits in any (fixed) position notation.  

There exists a variant of SWP protocol in which the agents do not disclose to each 

other their individual distances to shelters. 

6 Conclusion 

Above (a footnote 3) we have already referred to Plato's authority, having defined 

knowledge as a true belief about the reality. However, it is not the only interpretation 

of the concepts “belief” and “knowledge” of the agent. 

Apparently, the first to propose a formalization of these concepts was a Finnish lo-

gician J. Hintikka [7]. In his interpretation the definition of these concepts is to be 

associated with each agent indistinguishable binary relation between the possible 

states of the environment, “belief” corresponds to the symmetric and transitive rela-

tions and “knowledge” - reflexive, symmetric and transitive relations. More from this 

approach can be found on the monograph [5]. 

Essential lack of Hintikka’s approach to formalization of concepts of knowledge of 

belief is high complexity of the verification (by model checking). Unfortunately, veri-

fication of multiagent systems with the use of their opinions (belief) and knowledge 

has non-elementary (lower and upper) complexity [11] while the verification of 

multiagent systems without the use of belief and knowledge has an elementary com-

plexity (see for example [16]). 
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