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Introduction

Relational database

• Codd E. F. A relational model for large shared data banks. //
Communications of the ACM — 1970 — Vol. 13 — P. 377–387.

• Codd E. F. Relational completeness of data base
sublanguages. // Database Systems (ed. Rustin R.) —
Prentice-Hall — 1972 — P. 33–64.
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Introduction

First order logic

• Aho A., Ullman J. The universality of data retrieval languages. //
In Proc. ACM Symp. on Principles of Programming Languages. —
1979. ACM Press — P. 110–120.

Extensions
• second order logic
• transitive closure operator
• fixed point operators
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Introduction

Fixed point operators

• least fixed point (LFP),
• inflationary fixed point (IFP),
• partial fixed point (PFP).
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Introduction

Extension
Aho A., Ullman J. The universality of data retrieval languages. // In
Proc. ACM Symp. on Principles of Programming Languages. — 1979.
ACM Press — P. 110–120.
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Definitions

First order PFP-logic formula
A partial fixed point logic formula is defined like a first order logic
formula and with the partial fixed point operator PFP. Let φ(x̄, ȳ)
be a formula that contains a non-language predicate symbol Q.
Here, the length of ȳ must be equal to the arity of Q. Then,
PFPQ(ȳ)(φ) is a formula of an original language, this formula also
contains two tuples of free variables x̄ and ȳ.
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Definitions

Value of PFP-operator for finite structures
Let A be a structure, and φ(x̄, ȳ) be a formula that contains a new
predicate symbol Q, where x̄ and ȳ are tuples of variables. Let us fix
values of the variables x̄ as d̄ ∈ |A|. The value of the formula
PFPQ(ȳ)(φ) is defined as it is described in the following. Let us
construct the sequence of sets

Qd̄0 = ∅ and Qd̄i+1 = {ȳ ∈ |A|
∣∣ (A,Qd̄i ) |= φ(d̄, ȳ)}

for i ∈ ω.
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Definitions (finite structures)

Value of PFP-operator for finite structures
The value of partial fixed point is

PFPQ(ȳ)(φ) =

{
Qd̄n if Qd̄n = Qd̄n+1 for some n,
∅ if Qd̄n ̸= Qd̄n+1 for all n.

In first case we say that operator PFPQ(ȳ) stabilizes in n steps. The
value Qd̄∗ is Qd̄n. In this case PFPQ(ȳ)(φ)(d̄, ȳ) is true for all ȳ ∈ Qd̄∗
and false for all ȳ ̸∈ Qd̄∗.

In second case we say that operator PFPQ(ȳ) does not stabilize or
fail in loop. In this case the value of Qd̄∗ is ∅ and formula is false for
all ȳ.
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IFP-operator

Value of IFP-operator
Let A be a structure, and φ(x̄, ȳ) be a formula with a new predicate
symbol Q, where ȳ is a tuple of m elements. Let us fix the values of
the variables x̄ as d̄ ∈ |A|. A partial fixed point operator
IFPQ(ȳ)(φ)(d̄) is the set Qd̄∗ constructed as follows. Let

Qd̄0 = ∅; Qd̄i+1 = Qd̄i ∪ {ȳ ∈ |A|
∣∣ (A,Qd̄i ) |= φ(d̄, ȳ)},

for all i ∈ ω.

Qd̄∗ =
⋃
i∈ω

Qd̄i
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Introduction

PostgreSQL
WITH RECURSIVE cte_name ( column1 , column2 , . . . ) AS (

SELECT s e l e c t _ l i s t FROM tab le1 WHERE condi t ion

UNION [ ALL ]

SELECT s e l e c t _ l i s t FROM cte_name WHERE rec_condi t ion
)
SELECT * FROM cte_name ;
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Introduction

Partial fixed point
Gurevich Y., Shelah S. Fixed-point extensions of first-order logic. //
Annals of Pure and Applied Logic — 1986 — P. 265–280.

Finite structures
Libkin L. Elements of Finite Model Theory. — Berlin: Springer,
2004. — 314 p.
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Introduction

Infinite structures
Kreutzer S. Partial Fixed-Point Logic on Infinite Structure //
Computer Science Logic. — 2002. — P. 337–351.
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Definitions

PFP-operator semantic for infinite structures

• PFP∀-operator
• PFP∃-operator
• PFPQ-quantifier
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Definitions

PFP∀-operator
The value of the partial fixed point PFP∀ is the following set Qd̄∀. A
tuple ȳ belongs to the set Qd̄∀ if and only if the formula Qj(ȳ) is true
for almost every j. In the other words, there is some natural
number i such that the formula Qj(ȳ) is true for all natural numbers
j > i. Therefore, for these ȳ the formula PFP∀

Q(ȳ)(φ)(d̄, ȳ) is true.

PFP∃-operator
The value of the partial fixed point PFP∃ is the following set Qd̄∃. A
tuple ȳ belongs to the set Qd̄∃ if and only if the tuple ȳ belongs to
sets Qd̄i infinitely often. That is, there are infinitely many i such that
the formula Qd̄i (ȳ) is true. Therefore, for these ȳ the formula
PFP∃

Q(ȳ)(φ)(d̄, ȳ) is true.
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Examples

PFP∀-operator
Let us consider the finite graph G = (V, E), where V is a set of
vertices of the graph G and E is a set of edges. We consider this
graph G as a structure, where V is the domain and E(2) is the unique
binary predicate symbol. The formula E(x, y) means that there is an
edge from the vertex x to the vertex y. Then, the formula
PFP∀

Q(x)(θ)(v,w) is true if and only if the vertex w is reachable from
the vertex v, where

θ(v, x) ≡ x = v ∨ Q(x) ∨ (∃y)
(
Q(y) ∧ E(y, x)

)
.
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Examples

PFP∃-operator
The formula (∃a)(∃b)PFP∃

Q(u,x)(θ)(a, v,w) is true if and only if there
are paths of unbounded lengths from the vertex v to the vertex w,
where

θ(u,a,b, v, x) ≡ a ̸= b ∧(
¬(∃y)Q(a, y) ∧ ¬(∃y)Q(b, y) → u = a ∧ x = v

)
∧(

(∃y)Q(a, y) ∧ (∃z)(∃y)
(
Q(a, y) ∧ E(y, z)) →

u = a ∧ (∃y)
(
Q(a, y) ∧ E(y, x))

)
∧(

(∃y)Q(a, y) ∧ ¬(∃z)(∃y)
(
Q(a, y) ∧ E(y, z)) → u = b

)
∧(

¬(∃y)Q(a, y) ∧ (∃y)Q(b, y) → u = b
)
.
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Expressive power of PFP∀- and PFP∃-operators

Theorem
Let φ be an arbitrary formula. Then, the formula PFP∀

Q(ȳ)(φ)(ȳ) is
equivalent to the formula

PFP∃
Q(ȳ)(φ)(ȳ) ∧ ¬(∃a)(∃b)PFP∃

P(u,ȳ)(θ)(b,a,b, ȳ)

for all tuples ȳ.

Formula θ(u,a,b, ȳ) does not contain new PFP∀-operators.

Formula θ

θ(u,a,b, ȳ) ≡ a ̸= b ∧
[u = a ∧ φ′(a, ȳ) ∨ u = b ∧ ¬φ′(a, ȳ) ∧ P(a, ȳ)].
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Expressive power of PFP∀- and PFP∃-operators

Formula φ′

We introduce a new predicate symbol P. The arity of the predicate P
is w+ 1, where w is the arity of the predicate Q.

φ′(a, ȳ) ≡ (φ)
Q(̄t)
P(a,̄t)(ȳ).

Here in the formula φ we replace each occurrence Q(̄t) with P(a, t̄)
for all tuples t̄.

The first argument of the predicate P will be used as follows:
Pi(a, ȳ) is equivalent to Qi(ȳ), and Pi(b, ȳ) means that the tuple ȳ is
added in the previous step, but is missing in the current step.

Theorem proof. PFP∀
Q(ȳ)(φ)(c̄) ⇔

PFP∃
Q(ȳ)(φ)(ȳ) ∧ ¬(∃a)(∃b)PFP∃

P(u,ȳ)(θ)(b,a,b, c̄).
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Expressive power of PFP∀- and PFP∃-operators

Theorem
Let φ be an arbitrary formula. Then, the formula PFP∃

Q(ȳ)(φ)(ȳ) is
equivalent to the formula ¬(∃a)(∃b)PFP∀

P(u,ȳ)(θ)(b,a,b, ȳ).

Formula θ(u,a,b, ȳ) does not contain new PFP∃-operators.

Formula θ

θ(u,a,b, ȳ) ≡ a ̸= b ∧
[u = a ∧ φ′(a, ȳ) ∨ u = b ∧ ¬φ′(a, ȳ)].
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Expressive power of PFP∀- and PFP∃-operators

Formula φ′

φ′(a, ȳ) ≡ (φ)
Q(̄t)
P(a,̄t)(ȳ)

The first argument of the predicate P is used as follows: Pi(a, ȳ) is
equivalent to Qi(ȳ), and Pi(b, ȳ) is constructed as a complement of
the predicate Qi at any step.

Theorem proof.

PFP∃
Q(ȳ)(φ)(c̄) ⇔ ¬(∃a)(∃b)PFP∀

P(u,ȳ)(θ)(b,a,b, c̄).
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Expressive power of PFP∀- and PFP∃-operators

Corollary
PFP∀-logic and PFP∃-logic have the same expressive power.
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Definitions

PFPQ-quantifier
The formula

(
[PFPQ

Q(ȳ)(ψ)]φ
)
(d̄, ȳ) is satisfied if and only if there is

a natural number i such that

Qd̄i = {ȳ ∈ |A|
∣∣ A |= φ(d̄, ȳ)}.
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Examples

PFPQ-quantifier
The formula

[
PFPQ

Q(x)(θ)
]
(x = w) is true if and only if the vertex w is

the unique vertex located at some distance from the vertex v, where

θ(v, x) ≡
(
¬(∃y)Q(y) → x = v

)
∧
(
(∃y)Q(y) → (∃y)(Q(y) ∧ E(y, x))

)
.
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Expressive power of PFP∀-operator and PFPQ-quantifier

Theorem
Let φ(x̄, ȳ) and ψ(x̄, ȳ) be arbitrary formulas, where the formula ψ
contains the predicate symbol Q, and a length of the tuple ȳ is the
arity of Q. Then, the formula[

PFPQ
Q(ȳ)(ψ)

]
φ

is equivalent to the formula

(∀ȳ)
(
(∃a,b)PFP∀

P(u,ȳ)(θ)(a,a,b, ȳ) ↔ φ(ȳ)
)
.
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Expressive power of PFP∀-operator and PFPQ-quantifier

Formula θ
The formula θ defines the predicate P value as follows. Alternating
the first element a or b, tuples corresponding to the set Q are
added until we obtain the set given by the formula φ. After such a
set has been obtained, at each step we save its tuples with the first
element a.

Theorem proof.(
PFPQ

Q(ȳ)(ψ)
)
φ⇔ (∀ȳ)

(
(∃a,b)PFP∀

P(u,ȳ)(θ)(a,a,b, ȳ) ↔ φ(ȳ)
)
.
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Expressive power of PFP∀-operator and PFPQ-quantifier

Theorem
Let φ(x̄, ȳ) be an arbitrary formula, where the formula φ contains
the predicate symbol Q, and a length of the tuple ȳ is the arity of Q.
Then, the formula

PFP∀
Q(ȳ)(φ)(ȳ)

is equivalent to the formula

(∃a,b, c)
[

PFPQ
P(u,̄z)(θ1)

]
(u = c).

The formula θ1(u,a,b, c, ȳ) does not contains new PFP∀-operators.
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Expressive power of PFP∀-operator and PFPQ-quantifier

Formula θ1
We add to the set P tuples of the form (a, ȳ) where ȳ ∈ Qi. First we
reach the step where the tuple ȳ is added along with a, we mark
this by adding all possible tuples of the form (b, ȳ). If at least in
one of the next steps the tuple ȳ disappears, which is checked by
the internal PFP-operator, then we continue further construction.
Otherwise, we add all possible tuples of the form (c, ȳ) to mark
finding a step, starting from which ȳ will belong to all sets Q.

Theorem proof.

PFP∀
Q(ȳ)(φ)(ȳ) ⇔ (∃a,b, c)(PFPQ

P(u,̄z)(θ1))(u = c).
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Expressive power of PFP∀-operator and PFPQ-quantifier

Corollary
PFP∀-logic and PFPQ-quantifier logic have the same expressive
power.
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PFP∀-operator elimination

Theorem
If theory T is ω-categorical then PFP∀-operator can be eliminated
in the theory T.

Proof. Let us denote all nonequivalent formulas by ψi, and the
number of such formulas by m. We can eliminate the PFP∀-operator
as follows:
m∨
j0=1

. . .

m∨
jm=1

[
(∀ū)

(
ψj0(ū) ↔ (φ)Q¬⊤(ū)

)
∧
m−1∧
t
(∀ū)

(
ψjt+1(ū) ↔ (φ)Qψjt

(ū)
)
∧

∧
( m∨
l=0

m∨
k>l

[
(∀ū)

(
ψjl(ū) ↔ ψjk(ū)

)
∧ [

k∧
p=l

ψjp(x1, . . . , xs, y1, . . . , yn)]
])]

.
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PFP-operator for finite structures

Theorem for first order
If the structure is finite and has a linear order relation, then for any
PFP-logic formula φ with first-order quantifiers we can construct
an equivalent formula of the form

(Mȳ1)PFPQ(ȳ2)(ψ),

where M are first-order quantifiers, and ψ is a first-order logic
formula.
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Proof

Theorem proof. If the formula φ does not contain any partial fixed
point operator, then a dummy PFP-operator can be added to it.

To prove this, we use induction on the construction of the formula φ.
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PFP-operator for finite structures

Theorem for second order
If the structure is finite and has a relation of linear order, then for
any formula of PFP-logic with first- and second-order quantifiers
one can construct an equivalent formula of the form

(Mȳ1)PFPQ(ȳ2)(ψ),

where M is a first-order quantifier prefix, and ψ is a first-order logic
formula.
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Proof

Theorem proof. We replace each subformula of the form (∃Q)ψ with
(ψ)QPFPQ(x̄)(χ∃)

, and (∀Q)ψ with (ψ)QPFPQ(x̄)(χ∀)
, where (∃Q) and (∀Q) —

second order quantifiers. Let us define the formulas χ∃ and χ∀:

χ∃ ≡ ψ ∧ Q(x̄)∨
¬ψ ∧ (∃x̄) followQ(x̄) ∧ followQ(x̄)∨
¬ψ ∧ ¬(∃ȳ)¬Q(ȳ) ∧ Q(x̄),

χ∀ ≡ ¬ψ ∧ Q(x̄)∨
ψ ∧ (∃x̄) followQ(x̄) ∧ followQ(x̄)∨
ψ ∧ ¬(∃ȳ)¬Q(ȳ) ∧ Q(x̄).
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Expressive power of PFP- and IFP-operators

Preorder
A non-strict preorder is a binary relation on a set that is reflexive
and transitive.

Preorder leq
Let a structure have a strict partial order relation <, in which there
are arbitrarily long discrete chains. Then the preorder leq is discrete
and it contains an infinite discrete chain of consecutive elements.

leq(n̄1,a,b, n̄2, c,d) = IFPL(m̄,u,v)(θL)(n̄1,a,b, n̄2, c,d)

33



Expressive power of PFP- and IFP-operators

Formula Ψ

For an arbitrary operator PFPQ(ȳ)(φ), we can construct the formula
Ψ, which is an IFP-operator:

Ψ ≡ IFPP(n̄,u,v,ȳ)(θ).
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Expressive power of PFP- and IFP-operators

Theorem
The formula PFPQ(x̄)(φ)(z̄) is satisfied if and only if the formula F(z̄)
is satisfied, given as follows:

F(z̄) ≡ (∃n̄1)(∃a)(∃b)(∃n̄2)(∃c)(∃d)
(

leq(n̄1,a,b, n̄2, c,d) ∧ ¬ leq(n̄2, c,d, n̄1,a,b)∧
∧(∀m̄)(∀s)(∀t)(leq(n̄1,a,b, m̄, s, t) ∧ ¬ leq(m̄, s, t, n̄1,a,b) →

→ leq(n̄2, c,d, m̄, s, t))∧
∧(∀ȳ)(Ψ(n̄1,a,b, ȳ) ↔ Ψ(n̄2, c,d, ȳ)) ∧Ψ(n̄1,a,b, z̄)

)
.
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Expressive power of PFP- and IFP-operators

Theorem
The formula PFP∀

Q(x̄)(φ)(z̄) is satisfied if and only if the formula
F∀(z̄) is satisfied, given as follows:

F∀(z̄) ≡ (∃n̄1)(∃a)(∃b)
(
η(n̄1,a,b)∧

(∀n̄2)(∀c)(∀d)(leq(n̄1,a,b, n̄2, c,d) → Ψ(n̄2, c,d, z̄))
)
.

Auxiliary formula
The pair (a,b) belongs to some infinite discrete chain:

η(n̄1,a,b) ≡ (∀m̄)(∀e)(∀f)(leq(n̄1,a,b, m̄, e, f) →
→ (∀m̄′)(∃e′)(∃f′)(leq(m̄, e, f, m̄′, e′, f′) ∧ ¬ leq(m̄′, e′, f′, m̄, e, f))).
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Expressive power of PFP- and IFP-operators

Theorem
The formula PFP∃

Q(x̄)(φ)(z̄) is satisfied if and only if the formula
F∃(z̄) is satisfied, given as follows:

F∃(z̄) ≡ F∃1 (z̄) ∨ F∃2 (z̄),

where

F∃1 (z̄) ≡ (∃n̄1)(∃a)(∃b)
(
¬a = b ∧ leq(n̄1,a,a, n̄1,a,b)∧

∧ ¬(∃x̄)Ψ(n̄1,a,b, x̄)
)
∧ (∃n̄1)(∃a)(∃b)Ψ(n̄1,a,b, z̄),

F∃2 (z̄) ≡ (∀n̄1)(∀a)(∀b)
(
η(n̄1,a,b) →

→ (∃n̄2)(∃c)(∃d)(leq(n̄1,a,b, n̄2, c,d) ∧Ψ(n̄2, c,d, z̄))
)
.
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Expressive power of PFP- and IFP-operators

Consequence
The partial fixed point operators of the semantics PFP, PFP∀ and
PFP∃ can be modelled using the inflationary fixed point operator.
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Decidability of PFP∀-operator

Theorem
We consider the structure (Z, s(1)). Here Z is the set of integers, and
s(1) is the successor function. The halting problem for Minsky
machines with two counters is reducible to the truth problem in
the structure (Z, s(1)) for a partial fixed point logic formulas.
Moreover, formulas contain a unique unary PFP-operator.
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Proof

It is well known that we can assume the following.

1. the states are numbered from 0 to n, and the commands are
numbered from 0 to m− 1,

2. among the states there is only one final, and it has the number
n,

3. the values of both counters are 0 when the Minsky machine N

stops.
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Proof

The configuration of the Minsky machine with two counters has the
form (qi,g,h), where qi ∈ S is the state, g is the value of the first
counter, and h is the value of the second counter.

A unary relation E on the set of integers can be represented as a
sequence of 0 and 1. In this representation, 1 denotes that the
corresponding number belongs to the set E, and 0 denotes the
opposite. We encode the configuration (qi,g,h) of the Minsky
machine N by the unary relation as follows:

. . .
a
0 1 0 . . .

b
0︸ ︷︷ ︸

g+1

z
1 1 0 . . .

c
0︸ ︷︷ ︸

i+1

111 0 . . .
d
0︸ ︷︷ ︸

n−i+1︸ ︷︷ ︸
n+5

1111 0 . . .
e
0︸ ︷︷ ︸

h+1

111110 . . .
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Proof

For each of the four types of Minsky machine commands, we
construct the corresponding formula.

For example, for the command qi → inc1,qj the formula construct as
follows:

(∀a,b, c,d, e)
(
(∃u)Q(u) ∧ φi(a,b, c,d, e) → ψ(x,b,d) ∨

x = a ∨
x = s3+j+1b ∨ x = s3+j+2b ∨ x = s3+j+3b ∨
x = se ∨ x = s2e ∨ x = s3e ∨ x = s4e ∨ x = s5e

)
.
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Proof

Let us construct the following formula for the logic of a partial fixed
point:

(∃z)(∀u)
[

PFP∀
Q(x)

(
θ(z, x)

)
(u) ↔ τ(z,u)

]
,

where

θ(z, x) ≡[¬Q(z) → α(z, x)] ∧

[
m−1∧
l=0

pl] ∧

[τQ(z) → Q(x)].
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Undecidability of the PFP∀-operator

Comment
It is easy to see that the formula θ under the partial fixed point
operator is equivalent to some universal formula since all existence
quantifiers are in premises of implications.

Corollary
The halting problem for a Minsky machine with two counters is
reducible to the truth problem for a PFP-logic formula in the
algebraic structure (Z, s(1)). Moreover, all PFP-operators are
non-nested, unary, and applied only to universal formulas.
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Undecidability of the PFP∀-operator

Theorem
We consider the structure (Z, s(1)). Here Z is the set of integers, and
s(1) is the successor function that has the first element. The halting
problem for Minsky machines with two counters is reducible to the
truth problem in the structure (Z, s(1)) for a partial fixed point logic
formulas. Moreover, formulas contain a unique unary PFP-operator.
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Undecidability of the PFP∀-operator

Let us show how to construct the corresponding partial fixed point
formula:

(∃o)
[
¬(∃p)(sp = o) ∧ (∃z)(∀u)

[
PFP∀

Q(x)
(
θ(o, z, x)

)
(u) ↔ τ(z,u)

]]
,

where

θ(o, z, x) ≡[¬Q(z) → α(z, x)] ∧

[
m−1∧
l=0

pl] ∧

[τQ(z) → Q(x)] ∧
[Q(o) → sx = x].
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Possible questions

1. In some theorems, the constructed formulas use nested fixed
point operators. Is it possible to limit ourselves to a single
non-nested operator for infinite structures?

2. In many theorems, the constructed formulas use partial fixed
point operators whose arity is more than the original ones. It is
known that unary and binary inflationary fixed point operators
have different properties. Therefore, the question arises about
the possibility of constructing PFP-operators without increasing
the arity.

3. Determine which second order logic formulas can be converted
to partial fixed point formulas for infinite structures.
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Thanks for your attention
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