
Classification of commits in git repositories to find the
most common bug fixes in system software (Linux kernel

and cyberphysical systems projects)

Sergey Staroletov

Polzunov Altai State Technical University

STEP/online 21.08.2024

1 / 65

Introduction

Relevant papers to read

Analyzing hot bugs in the Linux kernel by clustering fixing commit messages
(Труды института системного программирования РАН, 2023, том 35, выпуск
3, страницы 215–242), DOI:
https://doi.org/10.15514/ISPRAS-2023-35(3)-16

Exploring the Taxonomy of Commits in Cyber-Physical Systems for Enhanced
Error Fixes Investigation (Труды института системного программирования
РАН, 2024, том 36, выпуск 2, страницы 33–46), DOI:
https://doi.org/10.15514/ISPRAS-2024-36(2)-3

2 / 65

https://doi.org/10.15514/ISPRAS-2023-35(3)-16

Introduction

History of the research

Poster session at SYRCoSE’2017 @ Innopolis

3 / 65

Introduction

History of the research

The work was put to ResearchGate as a preprint

There have been over 1500 views since 2017

4 / 65

Introduction

History of the research

In 2019, it was published in Russian in System Administrator 04 (197)
http://samag.ru/archive/article/3859 with some new data

5 / 65

http://samag.ru/archive/article/3859

Introduction

The purpose

The purpose of our work is to automatically analyze commits in the git repositories
to identify the most representative bugs.

In this work, we mainly discuss and try data analysis methods for git commit
messages.

6 / 65

Introduction

Part 1 of 2

Part1: Analyzing Linux kernel (Joint work with N. Starovoytov, N. Golovnev)

7 / 65

Introduction

Linux and git = two super-successful projects by Linus
Torvalds

8 / 65

Introduction

Big data analysis

In 1913, A.A. Markov used 20,000 sequential letters from A.S. Pushkin’s poem as
a big data to invent the Markov chains approach

9 / 65

Introduction

Big data analysis

Up to 2023, Linux has more than 1,000,000 commits (listed on
github.com/torvalds/linux)

10 / 65

Introduction

Big data analysis for Linux

Such an operating system belongs to a class of system software that provides
abstractions for accessing hardware from client code and the ability for such code
to work cooperatively.

With the increase in the number of developers in the world, an ever smaller
percentage of them are capable of developing system program code, and therefore
the development of system code is not popular.

However, there is a large amount of data circulating in system software
environments that can be analyzed by today’s popular data analysis methods.

11 / 65

Related work

Errors in Linux by static analyzing

In the pioneering work1 and then in2, static analyzers were used to automatically
check for potential errors in the Linux kernel code based on a given configuration
over different kernels.

Classes of errors were defined as predefined messages of a static analyzer, and
graphs of the evolution of errors over time and for different subsystems were
presented.

Specifically, drivers have been found to be 3-7 times more error prone than other
components.

1A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study of operating
systems errors,” in Proceedings of the eighteenth ACM symposium on Operating systems
principles, 2001, pp. 73–88.

2N. Palix, G. Thomas, S. Saha, C. Calve‘s, J. Lawall, and G. Muller, “Faults in Linux: Ten
years later,” in Proceedings of the sixteenth international conference on Architectural support
for programming languages and operating systems, 2011, pp. 305–318. 12 / 65

Related work

Errors in Linux by error grouping

In work3, an analysis of typical errors is made in the drivers of the Linux operating
system.

Here the concept of a typical error is introduced. It is specific to a large number of
drivers (for example, resource leaks, incorrect use of locks), while a non-typical
error is domain-specific for a particular driver.

The authors manually analyzed the changes during the transition from one kernel
version to another and compiled tables of the distribution of errors by classes. It
was also found that drivers make 85% of all errors in the kernel.

The paper4 continues this work, summarizes various statistics on changes in the
kernel and concludes that about 40% of changes between stable versions of the
kernel are fixes of typical errors.

3V. Mutilin, E. Novikov, and A. Khoroshilov, “Analysis of typical errors in Linux OS drivers
(in Russian),” Proceedings of the Institute for System Programming of the Russian Academy of
Sciences, vol. 22, pp. 349–374, 2012.

4E. M. Novikov, “Evolution of the Linux OS kernel (in Russian),”Proceedings of the Institute
for System Programming of the Russian Academy of Sciences, vol. 29, no. 2, pp. 77–96, 2017.

13 / 65

Related work

Errors in Linux by bug types

The work5 is devoted to the study of 5741 Linux kernel bug reports, which were
analyzed according to the description, comments and attached files from the Linux
kernel bug tracker bugzilla.kernel.org.

Bugs are classified into fast-reproducible (Bohrbug), difficult-to-reproduce
(Mandelbug) or context-dependent, and are also defined categories from which the
bug context depends, that is, errors with memory, not freed resources, etc.

At the same time, the authors built a network based on the Linux call graph, with
the help of which they track the impact of the functions affected in bug reports by
counting various metrics.

5G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du, and K.-Y. Cai, “An empirical study of fault
triggers in the Linux operating system: An evolutionary perspective,” IEEE Transactions on
Reliability, vol. 68, no. 4, pp. 1356–1383, 2019.

14 / 65

bugzilla.kernel.org

Related work

Errors in Linux by compiling kernels

Researchers present the results6 of compiling 42,060 kernels with all warnings
enabled.

As a result of the analysis of 400,000 warnings, they classified by type and
distribution by kernel subsystems and identified drivers as the most vulnerable
portion of the kernel.

6J. Melo, E. Flesborg, C. Brabrand, and A. Wasowski, “A quantitative analysis of variability
warnings in Linux,” in Proceedings of the Tenth International Workshop on Variability Modelling
of Software-intensive Systems, 2016, pp. 3–8.

15 / 65

Related work

Is a patch bug-fixing or not?

The research7 is separately devoted to determining whether a patch to the kernel
is a bug fix or not.

The authors note that simple analysis based on commit messages does not always
lead to results and propose a model that uses two classification algorithms:

Learning from Positive and Unlabeled Examples;

Support Vector Machine.

It also uses features extracted from the commit diff.

7Y. Tian, J. Lawall, and D. Lo, “Identifying Linux bug fixing patches,” in 2012 34th
international conference on software engineering (ICSE). IEEE, 2012, pp. 386–396.

16 / 65

Related work

Related work survey results

Summarizing the above on Linux bug analysis, it can be seen that:

1 bugs in drivers are the most common;

2 different methods are used for classification, these are static analysis, build logs
and patch analysis;

3 a lot of huge manual work has been done but the results may now be considered
no longer relevant (the code is constantly changing).

However, automatic classification by analyzing commits in git repositories has not been
applied yet.

17 / 65

On the implementation of our approach

General approach

18 / 65

On the implementation of our approach

Helpers

Levenshtein distance8 (very easy method to find a closest string)

L(s1, s2) := ∀i ∈ (0..|s1|) : di,0 := i + 1;

∀j ∈ (0..|s2|) : d0,j := j + 1;

∀i ∈ (1..|s1|) :
(∀j ∈ (1..|s2|) : cost := (s1[i − 1] = s2[j − 1])?0 : 1

di,j := min(min(di−1,j + 1, di,j−1), di−1,j−1 + cost);

d|s1|,|s2|) (1)

8V.I.Levenshtein,“Binary codes with correction of dropouts, insertions and character
substitutions (in Russian),” in Reports of the Academy of Sciences, vol. 163, no. 4. Russian
Academy of Sciences, 1965, pp. 845–848.

19 / 65

On the implementation of our approach

Helpers

Phrase vectorization, “bag of words”, cosine distance

D(s1, s2) := D((w1,1,w1,2, ..,w1,n),

(w2,1,w2,2, ..,w2,n)) = ∑n
i=1 w1,i · w2,i√∑n

i=1 w2
1,i ·

∑n
i=1 w2

2,i

(2)

In this case, permutations of words in a string will not change anything.

20 / 65

On the implementation of our approach

Helpers

TF-IDF for searching strings with "strong components"or relevant words/tokens:

If we denote nw as the number of occurrences of the word w into a commit
message m ∈ M, and nw as the total number of words in the document, and |M|
as the total number of messages, then:

tf-idf(w ,m,M) := tf(w ,m)× idf(w ,M) =

nw∑
k nk

× log
|M|

|{mi ∈ M | w ∈ di }|
(3)

21 / 65

On the implementation of our approach

Helpers

Lemmatization or lemma normalization for obtain the stem word form for each
word.

The use of StanfordCoreNLP API

22 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #1: [cpu, period, grace, rcu, event, callback, commit, probe, function, state,
check, structure, rcu_node, stall, file]

Fix day-one dyntick-idle stall-warning bug
rcu: Suppress more involved false-positive preempted-task splats
rcu: Accelerate grace period if last non-dynticked CPU
rcu/segcblist: Prevent useless GP start if no CBs to accelerate
Go dyntick-idle more quickly if CPU has serviced current grace period

These fixes address the very important RCU subsystem in Linux, which provides ways to
non-blockingly synchronize concurrent entities. However, there are problems in the form
of potential unfinished waiting or inefficiency in its implementation, since processors in
modern computing systems can go into energy-efficient hibernation, which leads to bugs
in the RCU implementation for the tasks running on them (problems with the waiting
period or grace period).

23 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #2: [buffer, kernel, ring, warning, doc, function, page, parameter, iterator, read,
type, member, resource, trace, tracepoint]

ring-buffer: Fix kernel-doc
ring-buffer: Always reset iterator to reader page
resource/docs: Fix new kernel-doc warnings
seccomp: fix kernel-doc function name warning
rcu: Fix a kernel-doc warnings for “count”

These fixes refer to corrections to code documentation, which are done in the form of
comments embedded in the code. The kernel-doc tool collects these comments and
checks their completeness. The comments here refer to the ring buffer, which can be
used to implement efficient network applications.

24 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #3: [module, panic, patch, build, state, cpu, error, message, new, unloaded,
code, function, kernel, notifier, list, load_module]

module: Ensure a module state is set accordingly during module coming
cleanup code
livepatch: Fix subtle race with coming and going modules
debug: track and print last unloaded module in the oops trace
Kprobes: Reference count the modules when probed on it
debug: show being-loaded/being-unloaded indicator for modules

These fixes concern errors when loading and unloading kernel modules, more precisely
during their live loading, when the already loaded code is replaced in a running system.
This is possible using the function tracing approach.

25 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #4: [tracer, function, graph, ret_stack, task, tracing, option, new, callback,
code, ftrace, return, add, boot, buffer]

tracing/function-graph-tracer: drop the kernel_text_address check
function-graph: allow unregistering twice
tracing: Move mmio tracer config up with the other tracers
function-graph: move initialization of new tasks up in fork
tracing: Add ftrace events for graph tracer

These fixes concern the actual implementation of tracing and working with the function
call graph.

26 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #5: [timer, base, cpu, target, clk, idle, code, interval, posix, task, tick, jiffy, case,
race, trace]

posix-timers: Fix full dynticks CPUs kick on timer rescheduling
timers: Use proper base migration in add_timer_on()
timer/trace: Improve timer tracing
posix-cpu-timers: Unbreak timer rearming
hrtimer: Preserve timer state in remove_hrtimer()

These fixes are aimed at fixing the kernel code for implementing timers according to the
POSIX standard (see for example a discussion on its userspace interface), namely errors
during recharging (when changing the response time of already set timers), which entails
working with related processes that may be located on temporarily retired processors.

27 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #6: [lock, ftrace, error, kernel, rlock, trace, deadlock, incompatible, type,
possible, comparison, lockdep, info, irq, timekeeping]

timekeeping: Avoid possible deadlock from clock_was_set_delayed
sched/core: Make dl_b->lock IRQ safe
timekeeping: Fix HRTICK related deadlock from ntp lock changes
cpu/hotplug: Drop the device lock on error
pid: fix lockdep deadlock warning due to ucount_lock

These fixes are related to the internal kernel elapsed time measurement subsystem and
associated incorrect locking in the implementation.

28 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #7: [console, printk, boot, message, list, line, early, srcu, add, time, tracepoint,
use, patch, problem, console_lock]

console: prevent registered consoles from dumping old kernel message over
again
CON_CONSDEV bit not set correctly on last console
printk: don’t prefer unsuited consoles on registration
Revert "printk: Block console kthreads when direct printing will be required"
console: allow to retain boot console via boot option keep

This series of fixes is devoted to kernel diagnostic messages and their output via tty
consoles.

29 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #8: [lockdep, lock, patch, time, code, cross, performance, release, run, second,
boot, case, kernel, bug, counter]

lockdep: spin_lock_nest_lock(), checkpatch fixes
lockdep, bug: Exclude TAINT_FIRMWARE_WORKAROUND from disabling
lockdep
lockdep: more robust lockdep_map init sequence
locking/lockdep: Add a boot parameter allowing unwind in cross-release and
disable it by default
tracing: use raw spinlocks for trace_vprintk

These fixes are related to the work of the lockdep deadlock prevention tool in the kernel
and the work of the checkpatch tool to check the formal requirements of the patches
associated with it.

30 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #9: [kernel, inline, bpf, event, type, btf, pid, trace, number, buffer, foo, lock, rip,
code, cat]

bpf: prevent decl_tag from being referenced in func_proto
tracing: Free buffers when a used dynamic event is removed
coredump: fix crash when umh is disabled
tracing: Fix memory leak in eprobe_register()
tracing: Check return value of __create_val_fields() before using its result

The fixes are related to BPF integration into the kernel and tracing, which were
detected by the Syzkaller tool. Since the tool reports contain listings with the same
keywords (register dump, call stack), they were detected as similar vectors.

31 / 65

Case Study: Linux kernel

General Vectors (Linux kernel)

Vector #10: [error, return, code, function, value, failure, case, cgroup, file, negative, ret,
add, userspace, bpf, caller]

cred: add missing return error code when set_cred_ucounts() failed
rcutorture: Fix error return code in rcu_perf_init()
bpf: Fix error return code in map_lookup_and_delete_elem()
ftrace: Deal with error return code of the ftrace_process_locs() function
genirq/timings: Fix error return code in irq_timings_test_irqs()

This series of fixes included fixes for the “fix error return code” error in various parts of
the kernel, including the BPF and RCU torture functions.

32 / 65

Case Study: Linux kernel

The result of analysis of whole Linux kernel

In general, based on this key subsystem of the Linux kernel, we can conclude that
most of the problems found and corrected were associated with incorrect operation
of multiprocessor concurrent systems due to incorrect processing of all scenarios in
the control flow, which involve accurate processing in conditions of variability of
resources such as processors, pages memory, etc.

That is, the handling of unexpected situations was not carried out completely
correctly.

The key kernel components mentioned were the RCU subsystem, swap
management, timing, BPF and tracing.

The code identified problems were related with the correct processing of return
codes.

33 / 65

Case Study: Linux kernel

The result of analysis of Linux drivers (/linux/drivers)

Fixes for kernel drivers are distinguished by the presence of a large number of
identical changes (“serial patches”).

Essentially, some change to the API is made and then the code for a large number
of drivers that depend on that API should be changed9.

Such changes can be described in the form of so-called semantic patches and
applied to a given set of files and also attempted to be generalized from a set of
source code files10.

9Lawall J., Muller G. Automating Program Transformation with Coccinelle. In Proc. of
NASA Formal Methods Symposium, pp. 71-87, 2022.

10Serrano L., Nguyen V.A., Thung F., Jiang L., Lo D., Lawall J., Muller G. SPINFER:
Inferring Semantic Patches for the Linux Kernel. In Proc. of 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pp. 235-248, 2020.

34 / 65

Case Study: Linux kernel

The result of analysis of Linux Memory management
(/linux/mm)

Modern changes in the Linux memory subsystem relate to virtual memory, large
memory blocks and various tools for memory monitoring and debugging.

Working with memory is so complex that without additional tools that are
provided by the kernel, debugging and optimization are not possible.

35 / 65

Case Study: Linux kernel

The result of analysis of Linux Scheduling
(/linux/kernel/sched)

The fixes in the scheduling subsystem are mainly devoted to improving deadline,
fair and realtime scheduling for groups, correct work with idle cpu state,
calculation of deadlines and updating time counters, and work in NUMA systems.

36 / 65

Case Study: Linux kernel

The result of analysis of Linux IRQ (/linux/kernel/irq)

As a result, we can say that the main fixes for IRQ in recent years have been
devoted to code refactoring, improving work with IRQ affinity, providing some
functions for export to other subsystems, and improving IRQ state management to
support disabling interrupts and interrupt context transfer to other processors11.

11Some more information on IRQ modeling: Staroletov, S. (2023, December). Towards Model
Checking Linux Interrupts Behavior for SMP Systems. In 2023 Ivannikov Ispras Open Conference
(ISPRAS) (pp. 150-156). IEEE.

37 / 65

Case Study: Linux kernel

The result of analysis of Linux x86 (/linux/arch/x86)

Fixes for this historical part of the kernel are devoted to code reorganization,
addressing known types of vulnerabilities, better support for virtualization, playing
around with quirks for specific hardware, as well as providing support for legacy
systems and subsystems.

38 / 65

Case Study: Linux kernel

The result of analysis of Linux ARM64 (/linux/arch/arm64)

It turned out that a huge number of fixes for the ARM platform are devoted
primarily to additions to device trees. There are a huge number of hardware
configurations for the platform, and such configurations are described through a
device tree in order to be accessible later programmatically by loading the
appropriate drivers.

Thus, for ARM64, the defining fixes are the reorganization of the device tree set,
reorganization of the code, synchronization of access to the state of internal
registers and operations with virtual dynamic shared objects.

39 / 65

Case Study: Linux kernel

The result of analysis of Linux ARM64 (/linux/arch/arm64)

It turned out that a huge number of fixes for the ARM platform are devoted
primarily to additions to device trees. There are a huge number of hardware
configurations for the platform, and such configurations are described through a
device tree in order to be accessible later programmatically by loading the
appropriate drivers.

Thus, for ARM64, the defining fixes are the reorganization of the device tree set,
reorganization of the code, synchronization of access to the state of internal
registers and operations with virtual dynamic shared objects.

40 / 65

Case Study: Linux kernel

Conclusion about Linux kernel analysis

Our analysis yielded satisfactory results, presenting the main vectors (in the form
of keywords) and example messages for each class of fix.

We also conducted a manual summary analysis for each class, revealing typical
fixes for each subsystem and the automated tools used to detect them.

We referenced these tools in our article and concluded that developers must study
them when working with the corresponding subsystem.

By selecting specific dates and parts of the repository, it is possible to identify
errors and gain valuable insights into their prevalence.

However, there is always room for improvement in any analysis, and our current
implementation could benefit from enhancements such as refining the detection of
fixing commits, improving the commit coupling thresholds for hierarchical
clustering, better normalization and removal of stop words, and developing
methods for automatically describing each class of errors found.

41 / 65

Part 2

Part 2 of 2

Part2: Analyzing repositories of cyber-physical systems (Joint work with N.
Starovoytov)

42 / 65

Introduction

Cyber-physical systems

Cyber-physical systems (CPS) are symbiotic multi-level control systems that take
into account the physical aspects of object operation. CPS integrate software
components, hardware, and the physical environment, such as machinery, sensors,
and actuators. These systems are actively applied in various domains including
automotive industry, medical equipment, manufacturing processes, and smart
cities, enabling the integration of digital and physical worlds to address complex
tasks of automation, control, and monitoring.

43 / 65

Introduction

Analyzed products

Ardupilot12 – an open-source autopilot software suite that enables autonomous
control of drones, unmanned aerial vehicles, and other robotic systems.

Scada-LTS13 – is used to monitor and control industrial processes, infrastructure
systems, and other complex systems that involve the interaction between physical
components and digital control systems.

Modelica14 – Modelica is an open-source, object- oriented modeling language that
is used to model complex cyber- physical systems that involve the interaction
between physical components and digital control systems.

KeYmaeraX15 – theorem prover for hybrid systems, which are systems that exhibit
both continuous dynamics (physical processes) and discrete dynamics (digital
control algorithms).

12https://github.com/ArduPilot/ardupilot
13https://github.com/SCADA-LTS/Scada-LTS
14https://github.com/modelica/ModelicaStandardLibrary
15https://github.com/LS-Lab/KeYmaeraX-release

44 / 65

https://github.com/ArduPilot/ardupilot
https://github.com/SCADA-LTS/Scada-LTS
https://github.com/modelica/ModelicaStandardLibrary
https://github.com/LS-Lab/KeYmaeraX-release

Related work

Errors in cyber-physical systems

In the book «Cyber-Physical Systems»16 authors propose various types of errors in
cyber-physical systems can, such as design errors, implementation errors and etc.
These errors can result in safety, system failures, performance, and security
vulnerabilities.

The research «Cyber-physical systems: a computational perspective»17 presents
numerous challenges due to the intricate nature of system interactions, real-time
constraints, resource limitations, and the necessity for interdisciplinary expertise.

Authors of «Deep learning-based anomaly detection in cyber-physical systems»18

research investigative to advancements in formal methods, model-based design,
runtime monitoring, anomaly detection, and machine learning technique.

16G. M. Siddesh, G. C. Deka, K. G. Srinivasa, and L. M. Patnaik, Cyber-physical systems: a
computational perspective. CRC press, 2015.

17R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: the next computing
revolution,” in Proceedings of the 47th design automation conference, 2010, pp. 731–736.

18Y. Luo, Y. Xiao, L. Cheng, G. Peng, and D. Yao, “Deep learning-based anomaly detection in
cyber-physical systems: Progress and opportunities,” ACM Computing Surveys (CSUR), vol. 54,
no. 5, pp. 1–36, 202

45 / 65

Approach implementation

General implementation

Processing of commits analysis with machine learning methods:

46 / 65

Approach implementation

Data source

The analyzed repositories very rarely have a description body. Therefore, only
headers are used as data.

The word before the colon is omitted to prevent the formation of clusters around
the names of files and modules.

47 / 65

Approach implementation

Repository management issue

Incomplete and uninformative commit messages make it difficult to understand the
development history and trace the causes of problems. In the repositories being
scanned, these commits appear too often.

48 / 65

Approach implementation

Height DF value issue

Poorly maintained repositories have the problem of high DF values in dictionaries,
indicating a lack of diversity in the tokens used and making it difficult to isolate key
aspects of the code under study. What causes some problems:

Decreased accuracy of keyword extraction

Increased noise in the data

Difficulty in representation of results

49 / 65

Approach implementation

LSA (Latent Semantic Analysis) implementation

Dimensionality Reduction LSA helps reduce the dimensionality of the commit
data, allowing for more efficient analysis

Semantic Similarity by capturing semantic relationships between terms, LSA
enables the identification of semantically similar commits, even if they use different
terminology or wording

Noise Reduction LSA helps filter out noise and irrelevant information from the
commit data, focusing on the most significant semantic features and improving the
quality of analysis results.

50 / 65

Approach implementation

Сlustering method

Switching to clustering with the DBSCAN method can significantly improve the
commit analysis process due to its ability to detect clusters with different densities
and shapes. This method also automatically determines the number of clusters and
is less affected to outliers, making it an ideal choice for working with datasets of
different sizes and characteristics.

51 / 65

Approach implementation

Parameter selection

Small repositories are particularly sensitive to clustering parameters that require
careful manual tuning. Their manual selection becomes critical to achieve optimal
results. This involves experimenting with different parameter values and parameter
combinations to find the most appropriate ones for a particular dataset.

Issue
Parameter

count LSA units min cluster size eps

large cluster increase no change increase
large outlier decrease decrease decrease
large count clusters increase increase increase
low relevance decrease increase decrease

52 / 65

Case Study

Size repository issue

A few commits in cyber-physical system repositories limits the data available for
analysis, making it difficult to identify patterns and long-term trends. Possible
reasons for the low commit frequency include smaller development teams, less
frequent updates, or more extensive testing and validation processes before
committing changes.

53 / 65

Case Study

Relevance commit count

A classifier which was trained on one repository may perform poorly on others due
to differences in coding practices, commit message conventions, and types of errors
encountered. These differences reduce the size of a relevance defined sample of
fixes and clustered data.

54 / 65

Case Study

Possible solutions of the samples problem

To solve the problem of weak descriptions and small number of commits, several
solutions are envisaged:

Analyzing relationships between commits

Tracking code changes over time

Identifying patterns based on commit sequences

Augmenting data with machine code

Extracting semantic tree data

Retrieving information about function names and variables

The use of metainformation

Analyzing meta-information such as commit author, time and related files

Combining different data sources to get a more complete image

55 / 65

Case Study

Summary for repository issues

All the analyzed repositories have problems in one way or another in clearly
recognizing commit clusters.

Issue
Repository

Scada Modelica KeYmaeraX ardupilot

weak description + + + +
low commit count + +
fix classification + +
low relevance + + +

56 / 65

Case Study

Summary for repository issues

For each repository, its own set of parameters has been determined that give the
optimal result in terms of the number and proportions of clusters.

The fewer problems there are in the repository, the more strict the parameters can
be specified.

Issue
parameters

Scada Modelica KeYmaeraX ardupilot

min cluster size 5 5 10 15
eps 0.23 0.23 0.38 0.45
LSA units 100 100 200 300

57 / 65

Case Study

Ardupilot clusters examples

1

floating-point values fixes.
’apvehicle’, ’compiler’, ’float’, ’override’, ’keyword’, ’old’, ’airspeed’
AP_PID: compiler warnings: apply is_zero(float)
APMrover2: compiler warnings: apply is_zero(float) or is_equal(float)
Plane: compiler warnings: apply is_zero(float) or is_equal(float)
APCompass : compilerwarnings : applyis_zero(float)oris_equal(float)
AntennaTracker: compiler warnings: apply is_zero(float) or is_equal(float)

2

improvement to the hardware definition for hardware abstraction level
’hwdef’, ’binding’, ’copter’, ’register’, ’match’, ’changes
AP_HAL_ChibiOS: hwdef add support for Networking
hwdef: add hwdef for SDMODELH7V1
AP_HAL_ChibiOS: update truenav hwdef
AP_HAL_ChibiOS: hwdef for Flywoo F405 Pro
AP_HAL: move defaulting of HAL_DSHOT_ALARM into hwdef

58 / 65

Case Study

Ardupilot clusters examples

3

support the Hardware-in-the-loop simulator.
’hil’, ’initial’, ’wrapper’, ’implementation’, ’roll’, ’tailsitter’
ACM: fixed HIL build again
ArduPlane: remove HIL support
AP_Compass: remove HIL support
Blimp: remove HIL support
GCS_MAVLink: remove HIL support

4

define macros in code.
’define’, ’separate’, ’send’, ’patch’, ’stability’, ’simple’
add separate define for AP_RCPROTOCOL_PPMSUM_ENABLED
add separate define for AP_RCPROTOCOL_ST24_ENABLED
add separate define for AP_RCPROTOCOL_DSM_ENABLED
add separate define for AP_RCPROTOCOL_SUMD_ENABLED
add separate define for AP_RCPROTOCOL_IBUS_ENABLEDf

59 / 65

Case Study

Ardupilot clusters examples

5

fixes for location objects.
’location’, ’adjust’, ’vector3f’, ’require’, ’accepts’
autotest: fixed buildlogs location for *.BIN
AP_Math: move line_path_proportion to Location
added some filtering and smoothing
Tweaks to fix Loiter
Changed save location to int32

6

fixes for obstacle avoidance functions.
’fence’, ’without’, ’register’, ’attitude’, ’pointer’
AC_Fence: add polygon fence check to check_destination_within_fence
AC_Avoid: add support for stopping at polygon fence
AC_Fence: add support for polygon fences
AP_OSD: Add fence indicator panel
Rover: add fence support

60 / 65

Case Study

Scada clusters examples

1

fixes for DAO (data access object).
’slts13’, ’testdao’, ’annotation’, ’cleanup’, ’scriptdao’
Added FlexProjectRowMapper and remove @SuppressWarning annotation
move expectedException to TestDAO
Rewrite ScriptDAO
controller’s clean-up
Implemented direct link navigation

2

patches for views (that is, representing the states of objects on the screen)
’correction’, ’commit’, ’display’, ’partial’, ’isalive2’, ’viewdao
Correction of commit number display. 1502
2051 Visual corrections (component shrink)
EventDetectorAPI corrections 153
2051 Add corrections to the IsAlive2
SLTS-40 Add correction to ViewDAO

61 / 65

Case Study

Modelica clusters examples

1

fixes for working with time events
’unify’, ’time’, ’ccr’, ’event’, ’enhancement’
refs 1627: Fix detection of (scaled) time events
refs 1627: Fix detection of scaled time events
CCR: corrected error in setState_ps

2

fixes for complex blocks with images
’due’, ’picture’, ’complexblocks’, ’modification’, ’docu’
Comments added due to 1475
modifications due to ComplexBlocks
due to 407 bugs 2, 3, 4, 5, 7 fixed (docu, pictures)
Some changes due to renaming of ReferenceMoistAir and ReferenceAir
Attempt to fix issue 3236

62 / 65

Case Study

KeYmaeraX clusters examples

1

addition of various functionalityto the project
’implement’, ’syntactic’, ’derivative’, ’index’
implement GetPathAll
implement the CreateProblemRequest
implement BranchRoot
implement skolemization
implement more of skeleton

2

fixes for the unification algorithms
’unification’, ’derive’, ’bidirectional’, ’axindex’, ’imply’
Colored-dots unification
Improve unification a bit further
Unification support for projection
Unification match: 0-indexed colored dots
DiffHelper derive fix (sign error)

63 / 65

Conclusion

Cluster analyzing results

Ardupilot project has the main errors that are specific to the software domain for
unmanned vehicles, such as issues of location processing, obstacle avoidance,
abstraction from hardware and scheduling.

For the SCADA system, errors specific to Java applications and MVC architecture
were found, which is not surprising, because such projects visualize monitoring
data of cyber-physical systems.

In the KeYmaeraX, a theorem prover for cyber-physical systems, the main logical
subsystems for proving cyber-physical models in which there were many changes in
the code were found: skolemization, nilpotent solve and unification.

64 / 65

Conclusion

Conclusion for cyber-physical systems analysis

The clustering results can be considered successful only for the Ardupilot project.
For the rest, there are problems with obtaining both the required number of
arbitrarily representative clusters, and with the quality of the found vectors.

The main problems to analyze in the organization of development of the selected
projects, when developers write uninformative messages about commits.

The advantage of our solution is the ability to easily evaluate what is being done in
a given repository and what errors were corrected, in order to learn from examples
of the development of this kind of systems with increased reliability requirements.

65 / 65

	Introduction
	Related work
	On the implementation of our approach
	Case Study: Linux kernel
	Part 2
	Introduction
	Related work
	Approach implementation
	Case Study
	Conclusion

