
Incidence matrix and OOP

Alexey Kanatov,
alexey.v.kanatov@gmail.com

LinkedIn

From: “Это все придумал Черчиль в 18 году” (С) Высоцкий В.С
To: “Это все придумал Мейер в 85 году”

mailto:alexey.v.kanatov@gmail.com
http://www.linkedin.com/in/kanatov

Content
• Brief personal introduction and motivation of the work

• Basic terms and foundations

• General algorithm

• Outcome

• Dynamic loading of objects of statically unknown classes

• Summary

2

Disclaimer: not all topics are fully investigated and some are partially
covered. Separate talks may be provided to cover

Personal introduction
• 10+ years in compilers (Modula-2, Ada, Eiffel, Accord, STS)

• 15+ years SW R&D and general management (Intel, Samsung,
WorldQuant)

• 4 years teaching at MEPhI, school #548, Innopolis University

• My advisors, role models
– Стрижевский В.С. – Модула-2

– Перминов О.Н. – Ada

– Meyer B – Eiffel

• “My way”
– Huawei, Chief academic consultant

– Innopolis University, Associate pprofessor, lab head

– Samsung, Compiler, Platform, System AI Tools department head

– WorldQuant Research (Eurasia), director

– Intel, head of Compiler QA, Compiler Russia, Moscow Site, Intel Platform Simulator

– Object Tools Inc., Visual Eiffel compiler architect and key developer

3

https://www.huawei.com/
https://innopolis.university/en/
https://research.samsung.com/
https://www.worldquant.com/
https://www.intel.com/

Motivation and objective
• 1993-96 – do not do VMT, do ‘FST’ I was told – was it a right

command? Doubt

• 1993-96 – I draw a matrix with classes vs. origin&seed – worth to
deepen analysis of the topic? Not all was done 30 years ago

• Inheritance is bad, dynamic dispatch is heavy, fragile base class – a lot
of educated believes. А баба Яга против

• What I remember from discreet math course – matrix rows and
columns can be swapped Your feedback is welcome!

4

Basic terms
• Object is a set of attributes. Objects with identical set of attributes’

kinds form a type which is described by class

• Class is … a named collection of members (features, characteristics)
– Member can be routine (function) or attribute (field)

• Routine can be procedure (action, command) or function (query)

• Attribute (query) can be variable or constant

– Another view: there are only attributes – variable or constant (assigned once).
Actions (routines) are just constant attributes of the function type

• Origin is the class the member was initially declared

• Seed is the initial member declaration in the origin class

• Inheritance – relation between classes implying all members of
every parent ‘go down’ to the child class. Base-derived, supertype,
extension – no need to step into terminology discussion

• Version of the member – in some class we may have several versions
– coming from the same origin&seed under the same or different
names, form different ones under the same name

5

Foundations (I): inheritance basics

6

A

B

foo

1.

A

B

foo

2.

*foo

class A
 foo
end
class B inherit A
end

class A
 foo
end
class B inherit A
 override foo
end

Class Version

A foo@A

B foo@A

Class Version

A foo@A

B foo@B

foo$A
foo$A

Foundations (II): no replication, but merge

7

A

B

foo

3.

/* There could be many
paths from B to A, with
many classes on all these
paths */

class A
 foo
end
class X inherit A
end
class B inherit A, A, X
end

Class Version

A foo@A

X foo@A

B foo@A

foo$A

Foundations (III): kill many birds with one
stone

8

A

C

foo

4.

class A
 foo
end
class B
 foo
end
class C inherit A, B
 override foo
end

Class foo$A foo$B

A foo@A

B foo@B

C foo@C foo@C

B foo

*foo

Foundations (IV): kill many birds with one
stone

9

A

C

foo

5.

class A
 foo
end
class B
 foo
end
class C inherit A,
B
 override B.foo
end

B foo

*foo

Class foo$A foo$B

A foo@A

B foo@B

C foo@B foo@B

Foundations (V): generalization,
no replication, kill many birds with many

stones

10

C

P1

Sic: ‘f’ is
the name

Pr

single
f

fk+1 .. fl fl+1 .. fm f1 .. fk

*f1 .. *fo1

fm+1 .. fn

overriding
f1..fo1+o2

*P1.f1 .. *Pox.fo2

overloading
fk+1..fl

Foundations (VI): any graph can be
presented as the incidence matrix

11

s$O1 s$O2 s$O3 … s$Om

C1 v@C11

C2 v@C22

C3 v@C13

…

Cn v@C1n v@C3n

this ->

• matrix is sparse!
• matrix contains addresses for routines and offsets from this for fields
• inheritance graph has the sink – Any (Object)
• treat this matrix as rows – VMT-like approach, vector indexed by

origin$seed ID (1 .. m) –> direct access to EA (effective address)
• treat this matrix as columns – MST approach, vector indexed by object

class ID (1 .. n) –> direct access to EA

Foundations (VII): any member
activation will look like

12

// Source code
target1.foo ()
target2.field1 := target3.field2

// Pseudo-asm code: row view
call target1[foo:seed$origin]
load target3[field2:seed$origin], #R1
store #R1, target2[field1:seed$origin]

// Pseudo-asm code: column view
call foo:seed$origin [target1]
load field2:seed$origin [target3], #R1
store #R1, field1:seed$origin [target2]

• there will be difference in number of instructions and their nature for
row and column based approaches for real assemblers! Rows are
better

• matrix is sparse – how to keep direct access and get rid of empty cells

Foundations (VIII): can we optimize
the matrix?

13

• Remove rows – no objects of the class at runtime
• Abstract classes
• Class does not belong to dynamic class sets (needs full program

analysis)
• Empty cells – particular version is never activated (fields caveat)

• Dead-code elimination in case of OOP (needs full program
analysis)

• Remove columns
• The same non-empty value in the column

• Assume we did all that –> what’s next –> to reorganize the matrix

General algorithm: demo

14

* - stands for override in class or while inheriting
Xn – means number of children the class has
Sort by number of children at every level

Any1

A3:f1

B3:*f1,f2 H2:f3
J2:f4

C0 D0:*f2 E2:f1 I1:*f3 K0:*f4

F0 G0

*f1 *f3

General algorithm: steps

15

#-1, Any1

#0, A3

#1, B3 #7, H2
#9, J2

#5, C0 #6, D0
#2, E2 #8, I1 #10, K0

#3, F0 #4, G0

• Numerate classes starting from 0
• Abstract or ‘objectless’ class will get -1

General algorithm: columns outcome

16

f1$A f2$B f3$H f4$J

#0, A f1@A

#1, B f1@B f2@B

#2, E f1@E f2@B f3@H

#3, F f1@E f2@B

#4, G f1@A f2@B f3@H f4@J

#5, C f1@B f2@B

#6, D f1@B f2@D

#7, H f1@A f3@H

#8, I f1@A f3@I f4@J

#9, J f1@A f4@J

#10, K f1@A f4@K

Columns’ view: no empty
cells, no direct access
f1$A:
 A, G, H, I => f1@A,
 B, C, D => f1@B,
 E, F => f1@E
f2$B:
 B, E, F, G,C=> f2@B,
 D => f1@D
f3$H:
 E, G, H => f3@H,
 I => f3@I
f4$J:
 G, I, K => f4@J,
 K => f4@K

General algorithm: columns outcome

17

f1$A f2$B f3$H f4$J

#0, A f1@A

#1, B f1@B f2@B

#2, E f1@E f2@B f3@H

#3, F f1@E f2@B

#4, G f1@A f2@B f3@H f4@J

#5, C f1@B f2@B

#6, D f1@B f2@D

#7, H f1@A f3@H

#8, I f1@A f3@I f4@J

#9, J f1@A f4@J

#10, K f1@A f4@K

0

1

2

4

EA = this -> class ID +
MST -> shift

Direct access + some
address arithmetic
burden

General algorithm: rows outcome

18

f1$A f2$B f3$H f4$J

#0, A f1@A

#1, B f1@B f2@B

#2, E f1@E f2@B f3@H

#3, F f1@E f2@B

#4, G f1@A f2@B f3@H f4@J

#5, C f1@B f2@B

#6, D f1@B f2@D

#7, H f1@A f3@H

#8, I f1@A f3@I f4@J

#9, J f1@A f4@J

#10, K f1@A f4@K

Rows’ view: empty cells,
direct access

‘Smart’ rows’ view - 2 kinds
of vectors:
• Fast – fully filled, direct

access
• Compact – no empty cells,

no direct access
H:
 f1$A => f1@A,
 f3$H => f3@H

Delta to switch from Fast to
Compact

Indication of potential dynamic class
loading case

19

• Pattern of class loading
foo (<parameters>): ReturnType foreign

• What to be stored in meta and what to be rebuilt?
f1$A f2$B f3$H f4$J

#0, A f1@A

#1, B f1@B f2@B

#2, E f1@E f2@B f3@H

#3, F f1@E f2@B

#4, G f1@A f2@B f3@H f4@J

#5, C f1@B f2@B

#6, D f1@B f2@D

#7, H f1@A f3@H

#8, I f1@A f3@I f4@J

#9, J f1@A f4@J

#10, K f1@A f4@K

One new class:
• One new row
• Potentially several

new columns

Aim: no difference
between access to
objects of classes
known at compile time
and ones loaded
dynamically

Summary

20

Incidence matrix class vs. seed&origin represents well the
whole inheritance graph. It is the central data structure
for analysis and optimizations

Classes numbering scheme based on the nature of the
inheritance graph and seed&origin numbering scheme
based on the length of the column vectors delivers
blocked matrix which supports direct access with minimal
memory losses to store empty cells

Dynamic loading of new classes enforces keeping meta
information to rebuild the matrix and regenerate a lot of
code in the worst case

Thank you !
Q&A

21

