
Jez Recompression Algorithm
for Solving Word Equations:

from Theory to
Implementation

Antonina Nepeivoda
Program Systems Institute of RAS

STEP, September 7th

1 / 21
STEP September 7th 2023

▲

Plan

Review of state-of-art on existential theory of strings;
Basic heuristics used before and their possible extensions;
Natural idea of recompression;
Recompression basics;
Simple heuristics on recompression.

2 / 21
STEP September 7th 2023

▲

Word equations

Definition
Given a constant alphabet A and a variable set V, a word
equation is an equation Φ = Ψ, where Φ,Ψ ∈ {A ∪V}∗. A
solution to the word equation is a substitution σ : V 7→ A∗ s.t.
Φσ textually coincides with Ψσ.

Let E be x A B = B A x, where A,B ∈ A, x ∈ V. Consider
the sequence σ1 : x 7→ Bx, σ2 : x 7→ ε. Then σ2 ◦ σ1 : x 7→ B
is a solution to E: (x A B)σ1σ2 = B A B = (B A x)σ1σ2.

3 / 21
STEP September 7th 2023

▲

The history of the word equations

In theory:

Algorithms for solving the quadratic (e.g. x A y = y A x)
and one-variable word equations (Matiyasevich, 1965)

An algorithm for solving the three-variable word equations
(Hmelevskij, 1971)

An algorithm for solving the word equations in the general
case (Makanin, 1977) — triply exponential in the no
solution case!

More efficient (but still doubly exponential in the no
solution case) algorithms (Plandowski, 2006, Jez, 2016)

4 / 21
STEP September 7th 2023

▲

The history of the word equations

In practice:

efficient algorithms for solving the straight-line (e.g.
x x x = y A z) word equations (Rümmer et al., 2014–...)

algorithms for solving quadratic word equations together
with constraints in LIA and finite transducers (Le et al.,
2018, Lin et al., 2016–...)

algorithms for solving the word equations in the case when
the solution lengths are bounded (Bjørner, 2009–..., Day,
2019)

general-case algorithms implemented in SMT-solvers using
Levi’s Lemma + heuristics.

5 / 21
STEP September 7th 2023

▲

Inconsistency in String Models

Simple random string models:

3–5 string parameters;
3–15 axioms;
the second argument in predicate ⪯ is constant;
no trivial inconsistencies.

Even in this simple case at least 20% of the random
inconsistent models are not proved to be so by cvc5 and z3.

6 / 21
STEP September 7th 2023

▲

Hardness Results

EST — Existential String Theory.

Theory letter
counting

length
counting REGEX Hardness

EST ✗ ✗ ✓ PSPACE
EST+len ✗ ✓ ✗ ???
EST+count ✓ ✗ ✗ Undec.

Note: letter and length counting can be used as additional datum in the pure
existential string theory.

7 / 21
STEP September 7th 2023

▲

Adding Counting Heuristics

Length counting (≈25% successes).
Letter counting (≈50% successes).

Why are they working well? How can they be extended?

8 / 21
STEP September 7th 2023

▲

Base General Heuristics:
Levi’s Lemma

Levi’s Lemma
Given equation xΦ1 = yΦ2, the following condition holds for
all its solutions x = yx ′ ∨ y = xy ′.

Important case: if the equation is xΦ1 = ξΦ2 (ξ ∈ Σ), then
either x = ξ x ′ ∨ x = ε.

Asymmertic;
Explodes variables multiplicity;
Explodes regular restrictions (later).

9 / 21
STEP September 7th 2023

▲

Equation Classes Solvable by LL

(also «terminating wrt LL»)

Quadratic equations (NP-hard).

Straight-line equations (linear with heuristics).

One-variable equations (linear with heuristics; require
splitting).

Equation systems containing an equation of classes 1–3
and an arbitrary set of equations xi Φi = Ψi xi, where
Φi, Ψi are constant strings (require splitting).

10 / 21
STEP September 7th 2023

▲

Splitting Heuristics

LL directly applied to the equation A w B w = w B w A results in
an infinite tree.

A w B w = w B w A

!aaw 7→ε

uu

!aaw 7→A w

��
⊥ A w B A w = w B A w A

!aaw 7→ε

uu

!aaw 7→A w

��
⊥ A w B A2 w = w B A2 w A

!aaw 7→ε

uu
!aaw 7→A w

��
⊥ . . .

Still, we can split the equation wrt the length-equal prefixes (or
suffixes): A w B w = w B w A

11 / 21
STEP September 7th 2023

▲

Splitting Heuristics

LL directly applied to the equation A w B w = w B w A results in
an infinite tree.
Still, we can split the equation wrt the length-equal prefixes (or
suffixes): A w B w = w B w A
The resulting equation system is trivially solvable.

A w = w B
B w = w A

!aaw 7→ε

zz

!aaw 7→A w
��

⊥
A w = w B

B A w = A w A

��
⊥

11 / 21
STEP September 7th 2023

▲

Safety of Splitting wrt LL

Transition from Φ1Φ2 = Ψ1Ψ2 to the system{
Φ1 = Ψ1

Φ2 = Ψ2
(1)

cannot transform a terminating equation into a non-terminating
system.

If unfolding wrt LL of Φ1Φ2 = Ψ1Ψ2 terminates, then
unfolding of the system (1) also terminates.

12 / 21
STEP September 7th 2023

▲

Counting Heuristics
Equation w u u = u A u w v cannot be splitted. However, its
image in LIA gives an equation with no solution:

|w |+ 2 · |u | < |w |+ 2 · |u |+ |v |+ 1

Equation u u Aw = w u B u is not contradictory in LIA, but
counting of B’s leads to a trivial contradiction.

|w |A + 2 · |u |A + 1 > |w |A + 2 · |u |A

A similar heuristics is successfully applied to
ABCwCuCu = wCuCuCBA, if the subwords AB are
counted:

|w |AB + 2 · |u |AB + 1 > |w |AB + 2 · |u |AB
This equation holds, since all the AB occurrences are either
inside values of w and u, or explicitly appear in the equation
sides, separated with C from variables.

13 / 21
STEP September 7th 2023

▲

Counting Heuristics

Let us consider C: ABwuu = wuuBA. Mapping x 7→ |x|AB,
AB 7→ 1, BA 7→ 0 leads to a contradiction. However, the equation
has solutions, ie w 7→ A, u 7→ ε.
Let us consider the subwords AB after this substitution:

AB A = A BA

The straightforward subword counting of AB does not takes the
crossing pair into account.

13 / 21
STEP September 7th 2023

▲

Counting Heuristics

Let us say that the pair γ1γ2 (γ1 ̸= γ2) can have a crossing
occurrence in a solution of Φ1 = Φ2, if:

Φ1 or Φ2 contains two neighborous variables;
Φi contains a variable occurrence left to γ2 occurrence;
Φi contains a variable occurrence right to γ1 occurrence.

If γ1 = γ2 is non-trivial: we must forbid overlapping of γ1γ1 with
itself when counting.

13 / 21
STEP September 7th 2023

▲

Natural Idea of Recompression

If the pair γ1γ2 (γ1 ̸= γ2) has no crossing occurrences in any
solution, then the pair can be considered as a new «letter»,
forcing the minimal solution of the resulting equation to
shorten.

Given wCAB = BwCw , pair AB is non-crossing, so we can replace it
with a new constant A1. The resulting equation is wCA1 = BwCw .

Maximal non-trivial blocks of the same letter γ can be also
treated as letters.

Given A2Bw = wBABwBA3, letter A is organised in subwords A1, A2,
A3, splitted by B. We can compress Ai into Ai and receive the equation
A2Bw = wBA1BwBA3.

14 / 21
STEP September 7th 2023

▲

Crossing pairs

How to get rid of the crossing pairs γ1γ2 in Φ1 = Φ2? Let us make
all of them explicit.

Φ1 = Φ2 contains substring wiγ2 ⇒ wi = w ′
iγ1;

Φ1 = Φ2 contains substring γ1wi ⇒ wi = γ2w
′
i ;

Φ1 = Φ2 contains substring wiwj ⇒ wi = w ′
iγ1 and

wj = γ2w
′
j .

We can consider all the given substitutions together with the
constraints on wi values forbidding them, and construct all crossing
pairs options.

15 / 21
STEP September 7th 2023

▲

Crossing pairs
Consider the equation ABwuu = wuuBA. The obvious cases of crossing pairs
occurrences are given below.

AB wuu = wuu BA

No
constraint

PairComp

AB

AB w A B u A B u A

= w A B u A B u A BA

w 7→ w A

u 7→ B u A

AB w B u A B u A

= w B u A B u A BA

u 7→ B u A
w ̸= w ′A

AB w A B u B u

= w A B u B u BA

w 7→ w A

u 7→ B u
u ̸= u ′A

AB wu A u A

= wu A u A BA

u 7→ u A
u ̸= Bu ′

AB wuu = wuu BA

u ̸= u ′A
u ̸= Bu ′ ∨ w ̸= w ′A

Negative constraints were simplified in the nodes.
A B substitution u 7→ u A

A B substitutions u 7→ B u and w 7→ w A

A B substitutions u 7→ B u and u 7→ u A

15 / 21
STEP September 7th 2023

▲

Crossing pairs

Now we can compress AB 7→ A1, since every equation considered
contains no crossing AB. Almost all resulting equations are contradictory.

ABwuu = wuuBA

No
constraint

PairComp

AB

A1wA1uA1uA
= wA1uA1uA1A

No
constraint

A1w BuA1uA

= wB uA1uA1A

Contradiction
wrt A1

occurrences
in prefixes

A1wA1uBu
= wA1uBuBA

Contradiction
wrt A1

occurrences

A1wu AuA

= wuA uA1A

Contradiction
wrt A1

occurrences
in prefixes

A1wuu = wuuBA

Contradiction
wrt A1

occurrences

Compression cannot lose solutions, thus contradictory branches can be
pruned.

15 / 21
STEP September 7th 2023

▲

Empty Substitutions

If the composition ηn ◦ · · · ◦ η1 where ηi : wi 7→ ε creates a
new crossing pair, then application of any ηi creates a crossing
pair.

The non-empty substitutions do not satisfy this property.

16 / 21
STEP September 7th 2023

▲

Block Compression

Compression to single X 7→ αi;
Taking block prefixes X 7→ αi1Xαi2 , with restriction
X ̸= ε, X ̸= αX, X ̸= Xα.

The new letters are not equal by default, but the indexes can be
substituted to get equal letters.

17 / 21
STEP September 7th 2023

▲

Block Compression
A0B0A0B0ww = wwB0B0A0A0

No constraints
No conditions

BlockComp

A0

A0B0A0B0A1 = A1B0B0B1

No constraints

A1 := A2·i1
0

B1 := A2
0

A0B0A0B0A1wB1wC1 = A1wB1wC1B0B0D1

w ̸= ε

w ̸= wPA0

w ̸= A0wS

A1 := Ai1
0 B1 := Ai1+i2

0 C1 := Ai2
0

D1 := A2
0

{
Prefixes : A1 = A0

Suffixes : A1 = B1

Thus, A0 = A2
0, which

is contradictory.

{
Prefixes : A1 = A0

Suffixes : C1 = D1
⇒

{
i1 = 1

i2 = 2

Thus, A0 ̸= B1 ̸= C1 ̸= D1 is verified, and we can
count letters A0 as usual.

17 / 21
STEP September 7th 2023

▲

Linearity & Counting

Indexes of suffix/prefix letters are linear functions;
Thus no other from linear diophantine equation may
appear in a configuration.

(But non-linearity can appear with counting heuristics)

18 / 21
STEP September 7th 2023

▲

Case explosion & Heuristics

(tested on balanced equations, i.e. having same sets of variables in
left- and right-hand sides)

Straightforward case study ⇒ O(4n) options (n —
distinct variables);
Constraint simplification ⇒ O(2m) options (m —
neighboring occurrences);
Letter counting ⇒ dramatic decrease of cases;
Levi’s Lemma Heuristics + negative constraints ⇒
realistic options sets for balanced equations.

19 / 21
STEP September 7th 2023

▲

Looping Heuristics

No new variable introduction ⇒ possible loops w.r.t.
letter renaming.

Must consider negative restrictions:
remove insignificant dependencies;
substitute all the given dependencies & find an inclusion
(similar to MSCP-A constraint treating).

20 / 21
STEP September 7th 2023

▲

Regular Restrictions

Consider z y x = x x z, where x ∈ A∗, y ∈ A+B+, z ∈ B∗.

LL: Case study is problematic, since the substitutions are
of the form xi 7→ xjxi. In general: regex intersection
explodes regex size.

Jez: To prove the equation is inconsistent, it is enough to
compress A blocks. In general, constant compression
simplifies regex structure (but explodes the alphabet size).

21 / 21
STEP September 7th 2023

▲

