Jez Recompression Algorithm for Solving Word Equations:

from Theory to Implementation

Antonina Nepeivoda
Program Systems Institute of RAS

> SJEP , September 7th

Plan

- Review of state-of-art on existential theory of strings;
- Basic heuristics used before and their possible extensions;
- Natural idea of recompression;
- Recompression basics;
- Simple heuristics on recompression.

Word equations

Definition

Given a constant alphabet \mathfrak{A} and a variable set \mathfrak{V}, a word equation is an equation $\Phi=\Psi$, where $\Phi, \Psi \in\{\mathfrak{A} \cup \mathfrak{V}\}^{*}$. A solution to the word equation is a substitution $\sigma: \mathfrak{V} \mapsto \mathfrak{A}^{*}$ s.t. $\Phi \sigma$ textually coincides with $\Psi \sigma$.

> Let E be $\mathrm{x} \mathbf{A} \mathbf{B}=\mathbf{B} \mathbf{A} \mathbf{x}$, where $\mathbf{A}, \mathbf{B} \in \mathfrak{A}, \mathrm{x} \in \mathfrak{V}$. Consider the sequence $\sigma_{1}: \mathrm{x} \mapsto \mathbf{B x}, \sigma_{2}: \mathrm{x} \mapsto \mathrm{\varepsilon}$. Then $\sigma_{2} \circ \sigma_{1}: \mathrm{x} \mapsto \mathbf{B}$ is a solution to E : $(\mathrm{x} \mathbf{A} \mathbf{B}) \sigma_{1} \sigma_{2}=\mathbf{B} \mathbf{A} \quad \mathbf{B}=(\mathbf{B} \mathbf{A} \mathbf{x}) \sigma_{1} \sigma_{2}$.

The history of the word equations

In theory:

- Algorithms for solving the quadratic (e.g. x $\mathbf{A} y=y \mathbf{A} x$) and one-variable word equations (Matiyasevich, 1965)
- An algorithm for solving the three-variable word equations (Hmelevskij, 1971)
- An algorithm for solving the word equations in the general case (Makanin, 1977) - triply exponential in the no solution case!
- More efficient (but still doubly exponential in the no solution case) algorithms (Plandowski, 2006, Jez, 2016)

The history of the word equations

In practice:

- efficient algorithms for solving the straight-line (e.g. $\mathrm{x} \mathrm{x} \mathrm{x}=\mathrm{y} \mathbf{A} \mathrm{z}$) word equations (Rümmer et al., 2014-...)
- algorithms for solving quadratic word equations together with constraints in LIA and finite transducers (Le et al., 2018, Lin et al., 2016-...)
- algorithms for solving the word equations in the case when the solution lengths are bounded (Bjørner, 2009-..., Day, 2019)
- general-case algorithms implemented in SMT-solvers using Levi's Lemma + heuristics.

Inconsistency in String Models

Simple random string models:

- 3-5 string parameters;
- 3-15 axioms;
- the second argument in predicate \preceq is constant;
- no trivial inconsistencies.

Even in this simple case at least 20% of the random inconsistent models are not proved to be so by cvc5 and z3.

Hardness Results

$\mathcal{E S T}$ - Existential String Theory.

Theory	letter counting	length counting	REGEX	Hardness
$\mathcal{E S T}$	\boldsymbol{x}	\boldsymbol{x}	$\boldsymbol{\checkmark}$	PSPACE
$\mathcal{E S T}+$ len	\boldsymbol{x}	\checkmark	\boldsymbol{x}	???
$\mathcal{E S T}$ +count	$\boldsymbol{\checkmark}$	\boldsymbol{x}	\boldsymbol{x}	Undec.

Note: letter and length counting can be used as additional datum in the pure existential string theory.

Adding Counting Heuristics

- Length counting ($\approx 25 \%$ successes).
- Letter counting ($\approx 50 \%$ successes).

Why are they working well? How can they be extended?

Base General Heuristics: Levi's Lemma

Levi's Lemma

Given equation $x \Phi_{1}=y \Phi_{2}$, the following condition holds for all its solutions $x=y x^{\prime} \vee y=x y^{\prime}$. Important case: if the equation is $x \Phi_{1}=\xi \Phi_{2}(\xi \in \Sigma)$, then either $x=\xi \chi^{\prime} \vee x=\varepsilon$.

- Asymmertic;
- Explodes variables multiplicity;
- Explodes regular restrictions (later).

Equation Classes Solvable by LL

(also <terminating wrt LL»)

- Quadratic equations (NP-hard).
- Straight-line equations (linear with heuristics).
- One-variable equations (linear with heuristics; require splitting).
- Equation systems containing an equation of classes 1-3 and an arbitrary set of equations $x_{i} \Phi_{i}=\Psi_{i} \chi_{i}$, where Φ_{i}, Ψ_{i} are constant strings (require splitting).

Splitting Heuristics

LL directly applied to the equation $\mathbf{A} w \mathbf{B} w=w \mathbf{B} w \mathbf{A}$ results in an infinite tree.

Still, we can split the equation wrt the length-equal prefixes (or suffixes): $\mathbf{A} w \quad \mathbf{B} w=w \mathbf{B} w \mathbf{A}$

Splitting Heuristics

LL directly applied to the equation $\mathbf{A} w \mathbf{B} w=w \mathbf{B} w \mathbf{A}$ results in an infinite tree.
Still, we can split the equation wrt the length-equal prefixes (or
suffixes): $\mathbf{A} w \quad \mathbf{B} w=w \mathbf{B} w \mathbf{A}$
The resulting equation system is trivially solvable.

Safety of Splitting wrt LL

Transition from $\Phi_{1} \Phi_{2}=\Psi_{1} \Psi_{2}$ to the system

$$
\left\{\begin{array}{l}
\Phi_{1}=\Psi_{1} \tag{1}\\
\Phi_{2}=\Psi_{2}
\end{array}\right.
$$

cannot transform a terminating equation into a non-terminating system.

If unfolding wrt LL of $\Phi_{1} \Phi_{2}=\Psi_{1} \Psi_{2}$ terminates, then unfolding of the system (1) also terminates.

Counting Heuristics

- Equation $w u u=u \mathbf{A} u w v$ cannot be splitted. However, its image in LIA gives an equation with no solution:

$$
|w|+2 \cdot|u|<|w|+2 \cdot|u|+|v|+1
$$

- Equation $u u \mathbf{A} w=w u \mathbf{B} u$ is not contradictory in LIA, but counting of \mathbf{B} 's leads to a trivial contradiction.

$$
|w|_{\mathbf{A}}+2 \cdot|u|_{\mathbf{A}}+1>|w|_{\mathbf{A}}+2 \cdot|u|_{\mathbf{A}}
$$

- A similar heuristics is successfully applied to $\mathbf{A B C} w \mathbf{C} u \mathbf{C} u=w \mathbf{C} u \mathbf{C} u \mathbf{C B A}$, if the subwords AB are counted:

$$
|w|_{\mathbf{A B}}+2 \cdot|u|_{\mathbf{A B}}+1>|w|_{\mathbf{A B}}+2 \cdot|u|_{\mathbf{A B}}
$$

This equation holds, since all the $\mathbf{A B}$ occurrences are either inside values of w and u, or explicitly appear in the equation sides, separated with C from variables.

Counting Heuristics

Let us consider $\mathbf{C}: \mathbf{A B} w u u=w u u \mathbf{B A}$. Mapping $x \mapsto|x|_{\mathbf{A B}}$, $\mathbf{A B} \mapsto 1, \mathbf{B A} \mapsto 0$ leads to a contradiction. However, the equation has solutions, ie $w \mapsto \mathbf{A}, u \mapsto \varepsilon$.
Let us consider the subwords $\mathbf{A B}$ after this substitution:

$$
\mathrm{AB} \mathbf{A}=\mathrm{A} B \mathbf{A}
$$

The straightforward subword counting of $\mathbf{A B}$ does not takes the crossing pair into account.

Counting Heuristics

Let us say that the pair $\gamma_{1} \gamma_{2}\left(\gamma_{1} \neq \gamma_{2}\right)$ can have a crossing occurrence in a solution of $\Phi_{1}=\Phi_{2}$, if:

- Φ_{1} or Φ_{2} contains two neighborous variables;
- Φ_{i} contains a variable occurrence left to γ_{2} occurrence;
- Φ_{i} contains a variable occurrence right to γ_{1} occurrence.

If $\gamma_{1}=\gamma_{2}$ is non-trivial: we must forbid overlapping of $\gamma_{1} \gamma_{1}$ with itself when counting.

Natural Idea of Recompression

- If the pair $\gamma_{1} \gamma_{2}\left(\gamma_{1} \neq \gamma_{2}\right)$ has no crossing occurrences in any solution, then the pair can be considered as a new «letter», forcing the minimal solution of the resulting equation to shorten.

Given $w \mathbf{C A B}=\mathbf{B} w \mathbf{C} w$, pair $\mathbf{A B}$ is non-crossing, so we can replace it with a new constant \mathbf{A}_{1}. The resulting equation is $w \mathbf{C A}_{1}=\mathbf{B} w \mathbf{C} w$.

- Maximal non-trivial blocks of the same letter γ can be also treated as letters.

Given $\mathbf{A}^{2} \mathbf{B} w=w \mathbf{B} \mathbf{A} \mathbf{B} w \mathbf{B A}^{3}$, letter \mathbf{A} is organised in subwords $\mathbf{A}^{1}, \mathbf{A}^{2}$, \mathbf{A}^{3}, splitted by \mathbf{B}. We can compress \mathbf{A}^{i} into \mathbf{A}_{i} and receive the equation $\mathbf{A}_{2} \mathbf{B} w=w \mathbf{B A}_{1} \mathbf{B} w \mathbf{B A}_{3}$.

Crossing pairs

How to get rid of the crossing pairs $\gamma_{1} \gamma_{2}$ in $\Phi_{1}=\Phi_{2}$? Let us make all of them explicit.

- $\Phi_{1}=\Phi_{2}$ contains substring $w_{i} \gamma_{2} \Rightarrow w_{i}=w_{i}^{\prime} \gamma_{1}$;
- $\Phi_{1}=\Phi_{2}$ contains substring $\gamma_{1} w_{\mathrm{i}} \Rightarrow w_{\mathrm{i}}=\gamma_{2} w_{i}^{\prime}$;
- $\Phi_{1}=\Phi_{2}$ contains substring $w_{i} w_{j} \Rightarrow w_{i}=w_{i}^{\prime} \gamma_{1}$ and $w_{j}=\gamma_{2} w_{j}^{\prime}$.
We can consider all the given substitutions together with the constraints on w_{i} values forbidding them, and construct all crossing pairs options.

Crossing pairs

Consider the equation $\mathbf{A B} w u u=w u u \mathbf{B A}$. The obvious cases of crossing pairs occurrences are given below.

$$
\begin{gathered}
\mathbf{A B} w u u=w u u \mathbf{B A} \\
\text { No } \\
\text { constraint }
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{A B} w u u=w u u \mathbf{B A} \\
& u \neq u^{\prime} \mathbf{A} \\
& u \neq \mathbf{B} u^{\prime} \vee w \neq w^{\prime} \mathbf{A}
\end{aligned}
$$

Negative constraints were simplified in the nodes.
A B substitution $u \mapsto u \mathbf{A}$
A B substitutions $u \mapsto \mathbf{B} u$ and $w \mapsto w \mathbf{A}$
A B substitutions $u \mapsto \mathbf{B} u$ and $u \mapsto u \mathbf{A}$

Crossing pairs

Now we can compress $\mathbf{A B} \mapsto \mathbf{A}_{1}$, since every equation considered contains no crossing $\mathbf{A B}$. Almost all resulting equations are contradictory.


```
A
=w (A}
    No
    constraint
```

$\mathbf{A}_{1} w \mathbf{B} u \mathbf{A}_{1} u \mathbf{A}$
$=w \mathbf{B} u \mathbf{A}_{1} u \mathbf{A}_{1} \mathbf{A}$
Contradiction
wrt \mathbf{A}_{1}
occurrences
in prefixes

PairComp $\mathbf{A B}$
Contradiction wrt \mathbf{A}_{1} occurrences
:---
$=w u \mathbf{A} u \mathbf{A}_{1} u \mathbf{A} u \mathbf{B}$

Contradiction wrt \mathbf{A}_{1} occurrences

Compression cannot lose solutions, thus contradictory branches can be pruned.

Empty Substitutions

If the composition $\eta_{n} \circ \cdots \circ \eta_{1}$ where $\eta_{i}: w_{i} \mapsto \varepsilon$ creates a new crossing pair, then application of any η_{i} creates a crossing pair.

The non-empty substitutions do not satisfy this property.

Block Compression

- Compression to single $X \mapsto \alpha^{\text {i }}$;
- Taking block prefixes $X \mapsto \alpha^{i_{1}} X \alpha^{i_{2}}$, with restriction $X \neq \varepsilon, X \neq \alpha X, X \neq X \alpha$.

The new letters are not equal by default, but the indexes can be substituted to get equal letters.

Block Compression

$\mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{~A}_{0} \mathrm{~B}_{0} \mathbf{w w}=\mathbf{w w B} \mathrm{B}_{0} \mathrm{~B}_{0} \mathrm{~A}_{0} \mathrm{~A}_{0}$
No constraints No conditions

$\mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{~A}_{1}=\mathrm{A}_{1} \mathrm{~B}_{0} \mathrm{~B}_{0} \mathrm{~B}_{1}$
No constraints
$A_{1}:=A_{0}^{2 \cdot{ }^{2}}$
$\mathrm{B}_{1}:=A_{0}^{2}$
$\mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{~A}_{1} w \mathrm{~B}_{1} w \mathrm{C}_{1}=\mathrm{A}_{1} w \mathrm{~B}_{1} w \mathrm{C}_{1} \mathrm{~B}_{0} \mathrm{~B}_{0} \mathrm{D}_{1}$
$\mathbf{w} \neq \varepsilon$
$\mathbf{w} \neq \mathbf{w}_{\mathrm{p}} \mathrm{A}_{0}$
$\mathbf{w} \neq \mathrm{A}_{0} \mathbf{w}$ s
$A_{1}:=A_{0}^{i_{1}} B_{1}:=A_{0}^{i_{1}+i_{2}} C_{1}:=A_{0}^{i_{2}}$
$\mathrm{D}_{1}:=\mathcal{A}_{0}^{2}$
$\left\{\begin{array}{c}\text { Prefixes: } A_{1}=A_{0} \\ \text { Suffixes : } A_{1}=B_{1}\end{array}\right.$
Thus, $A_{0}=A_{0}^{2}$, which is contradictory.

$$
\left\{\begin{array} { l }
{ \text { Prefixes: } A _ { 1 } = A _ { 0 } } \\
{ \text { Suffixes: } C _ { 1 } = D _ { 1 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
i_{1}=1 \\
i_{2}=2
\end{array}\right.\right.
$$

Thus, $A_{0} \neq B_{1} \neq C_{1} \neq D_{1}$ is verified, and we can count letters A_{0} as usual.

Linearity \& Counting

- Indexes of suffix/prefix letters are linear functions;
- Thus no other from linear diophantine equation may appear in a configuration.
(But non-linearity can appear with counting heuristics)

Case explosion \& Heuristics

(tested on balanced equations, i.e. having same sets of variables in left- and right-hand sides)

- Straightforward case study $\Rightarrow \mathrm{O}\left(4^{n}\right)$ options ($n-$ distinct variables);
- Constraint simplification $\Rightarrow \mathrm{O}\left(2^{m}\right)$ options (m neighboring occurrences);
- Letter counting \Rightarrow dramatic decrease of cases;
- Levi's Lemma Heuristics + negative constraints \Rightarrow realistic options sets for balanced equations.

Looping Heuristics

- No new variable introduction \Rightarrow possible loops w.r.t. letter renaming.
- Must consider negative restrictions:
- remove insignificant dependencies;
- substitute all the given dependencies \& find an inclusion (similar to MSCP-A constraint treating).

Regular Restrictions

Consider $\mathbf{z} \mathbf{y} \mathbf{x}=\mathbf{x} \mathbf{x} \mathbf{z}$, where $\mathbf{x} \in \mathbf{A}^{*}, \mathbf{y} \in \mathbf{A}^{+} \mathbf{B}^{+}, \mathbf{z} \in \mathbf{B}^{*}$.

- LL: Case study is problematic, since the substitutions are of the form $x_{i} \mapsto x_{j} x_{i}$. In general: regex intersection explodes regex size.
- Jez: To prove the equation is inconsistent, it is enough to compress A blocks. In general, constant compression simplifies regex structure (but explodes the alphabet size).

