Jez Recompression Algorithm for Solving Word Equations: from Theory to Implementation

Antonina Nepeivoda Program Systems Institute of RAS

STEP, September 7th

STEP September 7th 2023

Plan

- Review of state-of-art on existential theory of strings;
- Basic heuristics used before and their possible extensions;
- Natural idea of recompression;
- Recompression basics;
- Simple heuristics on recompression.

Word equations

Definition

Given a constant alphabet \mathfrak{A} and a variable set \mathfrak{V} , *a word* equation is an equation $\Phi = \Psi$, where $\Phi, \Psi \in {\mathfrak{A} \cup \mathfrak{V}}^*$. A solution to the word equation is a substitution $\sigma : \mathfrak{V} \mapsto \mathfrak{A}^*$ s.t. $\Phi \sigma$ textually coincides with $\Psi \sigma$.

Let E be x **A B** = **B A** x, where **A**, **B** $\in \mathfrak{A}$, $x \in \mathfrak{V}$. Consider the sequence $\sigma_1 : x \mapsto Bx$, $\sigma_2 : x \mapsto \varepsilon$. Then $\sigma_2 \circ \sigma_1 : x \mapsto B$ is a solution to E: $(x A B)\sigma_1\sigma_2 = B A B = (B A x)\sigma_1\sigma_2$.

The history of the word equations

In theory:

- Algorithms for solving the quadratic (e.g. x A y = y A x) and one-variable word equations (Matiyasevich, 1965)
- An algorithm for solving the three-variable word equations (Hmelevskij, 1971)
- An algorithm for solving the word equations in the general case (Makanin, 1977) — triply exponential in the no solution case!
- More efficient (but still doubly exponential in the no solution case) algorithms (Plandowski, 2006, Jez, 2016)

The history of the word equations

In practice:

.

- efficient algorithms for solving the straight-line (e.g. x x = y A z) word equations (Rümmer et al., 2014-...)
- algorithms for solving quadratic word equations together with constraints in LIA and finite transducers (Le et al., 2018, Lin et al., 2016-...)
- algorithms for solving the word equations in the case when the solution lengths are bounded (Bjørner, 2009–..., Day, 2019)
- general-case algorithms implemented in SMT-solvers using Levi's Lemma + heuristics.

Inconsistency in String Models

Simple random string models:

- 3–5 string parameters;
- 3–15 axioms;

.

- the second argument in predicate \leq is constant;
- no trivial inconsistencies.

Even in this simple case at least 20% of the random inconsistent models are not proved to be so by cvc5 and z3.

Hardness Results

\mathcal{EST} — Existential String Theory.

Theory	letter counting	length counting	REGEX	Hardness
EST	X	×	 ✓ 	PSPACE
EST+len	×	1	X	???
EST+count	1	×	×	Undec.

Note: letter and length counting can be used as additional datum in the pure existential string theory.

Adding Counting Heuristics

- Length counting (\approx 25% successes).
- Letter counting (\approx 50% successes).

.

Why are they working well? How can they be extended?

STEP September 7th 2023

Base General Heuristics: Levi's Lemma

Levi's Lemma

Given equation $x \Phi_1 = y \Phi_2$, the following condition holds for all its solutions $x = y x' \lor y = x y'$.

Important case: if the equation is $x \Phi_1 = \xi \Phi_2$ ($\xi \in \Sigma$), then either $x = \xi x' \lor x = \varepsilon$.

- Asymmetric;
- Explodes variables multiplicity;
- Explodes regular restrictions (later).

Equation Classes Solvable by LL

(also «terminating wrt LL»)

- Quadratic equations (NP-hard).
- Straight-line equations (linear with heuristics).
- One-variable equations (linear with heuristics; require splitting).
- Equation systems containing an equation of classes 1–3 and an arbitrary set of equations $x_i \Phi_i = \Psi_i x_i$, where Φ_i, Ψ_i are constant strings (require splitting).

Splitting Heuristics

LL directly applied to the equation $A \ w \ B \ w = w \ B \ w \ A$ results in an infinite tree.

Still, we can split the equation wrt the length-equal prefixes (or suffixes): A w B w = w B w A

Splitting Heuristics

LL directly applied to the equation $A \ w \ B \ w = w \ B \ w \ A$ results in an infinite tree.

Still, we can split the equation wrt the length-equal prefixes (or suffixes): A w B w = w B w AThe resulting equation system is trivially solvable.

$$\begin{array}{c}
\mathbf{A} \ w = w \ \mathbf{B} \\
\mathbf{B} \ w = w \ \mathbf{A} \\
\overset{w \mapsto \varepsilon}{\mathbf{Y}} \ \overset{w \mapsto \mathbf{A} \ w}{\mathbf{Y}} \\
\mathbf{A} \ w = w \ \mathbf{B} \\
\mathbf{B} \ \mathbf{A} \ w = \mathbf{A} \ w \ \mathbf{A} \\
\end{array}$$

.

Safety of Splitting wrt LL

Transition from $\Phi_1\Phi_2 = \Psi_1\Psi_2$ to the system

$$\begin{cases} \Phi_1 = \Psi_1 \\ \Phi_2 = \Psi_2 \end{cases} \tag{1}$$

cannot transform a terminating equation into a non-terminating system.

If unfolding wrt LL of $\Phi_1 \Phi_2 = \Psi_1 \Psi_2$ terminates, then unfolding of the system (1) also terminates.

Counting Heuristics

• Equation $w \ u \ u = u \ \mathbf{A} \ u \ w \ v$ cannot be splitted. However, its image in LIA gives an equation with no solution:

 $|w| + 2 \cdot |u| < |w| + 2 \cdot |u| + |v| + 1$

- Equation $u \ u \ \mathbf{A} \ w = w \ u \ \mathbf{B} \ u$ is not contradictory in LIA, but counting of **B**'s leads to a trivial contradiction. $|w|_{\mathbf{A}} + 2 \cdot |u|_{\mathbf{A}} + 1 > |w|_{\mathbf{A}} + 2 \cdot |u|_{\mathbf{A}}$
- A similar heuristics is successfully applied to ABCwCuCu = wCuCuCBA, if the subwords AB are counted:

 $|w|_{AB} + 2 \cdot |u|_{AB} + 1 > |w|_{AB} + 2 \cdot |u|_{AB}$

This equation holds, since all the **AB** occurrences are either inside values of w and u, or explicitly appear in the equation sides, separated with **C** from variables.

STEP September 7th 2023

Counting Heuristics

Let us consider C: ABwuu = wuuBA. Mapping $x \mapsto |x|_{AB}$, $AB \mapsto 1$, $BA \mapsto 0$ leads to a contradiction. However, the equation has solutions, ie $w \mapsto A$, $u \mapsto \varepsilon$. Let us consider the subwords AB after this substitution:

$\mathbf{AB} \ \mathbf{A} = \mathbf{A} \ \mathbf{BA}$

The straightforward subword counting of **AB** does not takes the *crossing pair* into account.

13 / 21

Counting Heuristics

Let us say that the pair $\gamma_1\gamma_2$ ($\gamma_1 \neq \gamma_2$) can have a crossing occurrence in a solution of $\Phi_1 = \Phi_2$, if:

- Φ_1 or Φ_2 contains two neighborous variables;
- Φ_i contains a variable occurrence left to γ_2 occurrence;
- Φ_i contains a variable occurrence right to γ_1 occurrence.

If $\gamma_1=\gamma_2$ is non-trivial: we must forbid overlapping of $\gamma_1\gamma_1$ with itself when counting.

Natural Idea of Recompression

• If the pair $\gamma_1\gamma_2$ ($\gamma_1 \neq \gamma_2$) has no crossing occurrences in any solution, then the pair can be considered as a new «letter», forcing the minimal solution of the resulting equation to shorten.

Given wCAB = BwCw, pair AB is non-crossing, so we can replace it with a new constant A₁. The resulting equation is $wCA_1 = BwCw$.

• *Maximal* non-trivial blocks of the same letter γ can be also treated as letters.

Given $A^2Bw = wBABwBA^3$, letter A is organised in subwords A^1 , A^2 , A^3 , splitted by B. We can compress A^i into A_i and receive the equation $A_2Bw = wBA_1BwBA_3$.

Crossing pairs

How to get rid of the crossing pairs $\gamma_1\gamma_2$ in $\Phi_1 = \Phi_2$? Let us make all of them explicit.

- $\Phi_1 = \Phi_2$ contains substring $w_i \gamma_2 \Rightarrow w_i = w'_i \gamma_1$;
- $\Phi_1 = \Phi_2$ contains substring $\gamma_1 w_i \Rightarrow w_i = \gamma_2 w'_i$;
- $\Phi_1 = \Phi_2$ contains substring $w_i w_j \Rightarrow w_i = w'_i \gamma_1$ and $w_j = \gamma_2 w'_j$.

We can consider all the given substitutions together with the constraints on w_i values forbidding them, and construct all crossing pairs options.

Crossing pairs

Consider the equation ABwuu = wuuBA. The obvious cases of crossing pairs occurrences are given below.

Negative constraints were simplified in the nodes.

.

Crossing pairs

Now we can compress $AB \mapsto A_1$, since every equation considered contains no crossing AB. Almost all resulting equations are contradictory.

Compression cannot lose solutions, thus contradictory branches can be pruned.

STEP September 7th 2023

Empty Substitutions

If the composition $\eta_n \circ \cdots \circ \eta_1$ where $\eta_i : w_i \mapsto \varepsilon$ creates a new crossing pair, then application of any η_i creates a crossing pair.

The non-empty substitutions do not satisfy this property.

STEP September 7th 2023

.

Block Compression

- Compression to single $X \mapsto \alpha^i$;
- Taking block prefixes $X \mapsto \alpha^{i_1} X \alpha^{i_2}$, with restriction $X \neq \varepsilon$, $X \neq \alpha X$, $X \neq X \alpha$.

The new letters are not equal by default, but the indexes can be substituted to get equal letters.

STEP September 7th 2023

17 / 21

Block Compression

	$\left[A_0 B_0 A_0 B_0 \mathbf{w} \mathbf{w} = \mathbf{w} \mathbf{w} B_0 B_0 A_0 A_0 \right]$
	No constraints No conditions
	A ₀
A_0B_0	$A_0B_0A_1\mathbf{w}B_1\mathbf{w}C_1 = A_1\mathbf{w}B_1\mathbf{w}C_1B_0B_0D_1$
	$\begin{array}{l} {\bf w} \neq {\boldsymbol \epsilon} \\ {\bf w} \neq {\bf w}_{\rm P} A_0 \\ {\bf w} \neq A_0 {\bf w}_{\rm S} \\ A_1 := A_0^{i_1} \ B_1 := A_0^{i_1+i_2} \ C_1 := A_0^{i_2} \\ D_1 := A_0^2 \end{array}$

$A_0B_0A_0B_0A_1 = A_1B_0B_0B_1$
No constraints
$A_1 := A_0^{2 \cdot i_1}$
$B_1 := A_0^2$

$$\begin{cases} \mathsf{Prefixes}: A_1 = A_0\\ \mathsf{Suffixes}: A_1 = B_1 \end{cases}$$
 Thus, $A_0 = A_0^2$, which is contradictory.

 $\begin{cases} \mathsf{Prefixes}: A_1 = A_0\\ \mathsf{Suffixes}: C_1 = D_1 \end{cases} \Rightarrow \begin{cases} \mathfrak{i}_1 = 1\\ \mathfrak{i}_2 = 2 \end{cases}$ Thus, $A_0 \neq B_1 \neq C_1 \neq D_1$ is verified, and we can count letters A_0 as usual.

STEP September 7th 2023

.

17 / 21

Linearity & Counting

- Indexes of suffix/prefix letters are linear functions;
- Thus no other from linear diophantine equation may appear in a configuration.

(But non-linearity can appear with counting heuristics)

STEP September 7th 2023

Case explosion & Heuristics

(tested on balanced equations, i.e. having same sets of variables in left- and right-hand sides)

- Straightforward case study $\Rightarrow O(4^n)$ options (n distinct variables);
- Constraint simplification $\Rightarrow O(2^m)$ options (m neighboring occurrences);
- Letter counting \Rightarrow dramatic decrease of cases;
- Levi's Lemma Heuristics + negative constraints \Rightarrow realistic options sets for balanced equations.

Looping Heuristics

- No new variable introduction ⇒ possible loops w.r.t. letter renaming.
- Must consider negative restrictions:
 - remove insignificant dependencies;
 - substitute all the given dependencies & find an inclusion (similar to MSCP-A constraint treating).

Regular Restrictions

Consider z y x = x x z, where $x \in A^*$, $y \in A^+B^+$, $z \in B^*$.

- LL: Case study is problematic, since the substitutions are of the form x_i → x_jx_i. In general: regex intersection explodes regex size.
- Jez: To prove the equation is inconsistent, it is enough to compress A blocks. In general, constant compression simplifies regex structure (but explodes the alphabet size).