
To transform is to understand:

an experiment of building an interactive
regular language converter

Antonina Nepeivoda

STEP, Innopolis, March 8th
Program Systems Institute of RAS

1 / 33
STEP March 8th 2023

▲



Introduction

Background (BMSTU, IU9)

Formal Language theory course, 5th semester, 3 to 4
lectures on regular languages.

The students have elementary theoretical background of
the automata, and most of them use regexes in the
programming practice.

The basic course is too repetitive; the abstract algebraic
course is too challenging.

Intention: to make theoretical concepts more tangible by
using an interactive regular language converter.

2 / 33
STEP March 8th 2023

▲



Introduction

Two approaches to automata theory

Classical Approach

Base: DFA representation
Study of the classical FA
transformations (e.g.,
determinization,
minimization...)
Focus on parsing and
algorithms

Modern Approach

Base: algebraic structures
(equivalence classes,
monoids...)
Study of the uniform and
specific properties of
different language
representations
Focus on generic analysis
techniques rather than
algorithms (e.g.,
simulation, closure,
rewriting)

3 / 33
STEP March 8th 2023

▲



Introduction

Example: Unified Glushkov
construction
(C.Allauzen, M.Mohri: Math. Found. of Comp. Sci. 2006)

Aims at unifying several NFA constructions using closure+rewriting
approaches over the classical Thompson automaton.

Thompson automaton

Stepwise construction from the subregexes.
Running example: regex aa� |ε

q8

q0

q6

q1

q2

q5

q3

q9
q7

ε
ε

a
ε

ε

a
ε ε

ε

ε ε

4 / 33
STEP March 8th 2023

▲



Introduction

Example: Unified Glushkov
construction
(C.Allauzen, M.Mohri: Math. Found. of Comp. Sci. 2006)

Aims at unifying several NFA constructions using closure+rewriting
approaches over the classical Thompson automaton.

Glushkov automaton

Making use of Follow-relation. The NFA states correspond to the
letters in the linearized regex.
The linearized regex: a0a1� |ε
The Follow set:

 
pa0, a1q pa1, a1q

(

S a0 a1a a

a

4 / 33
STEP March 8th 2023

▲



Introduction

Example: Unified Glushkov
construction
(C.Allauzen, M.Mohri: Math. Found. of Comp. Sci. 2006)

Aims at unifying several NFA constructions using closure+rewriting
approaches over the classical Thompson automaton.

Glushkov automaton

S a0 a1a a

a

Merging the Follow-equivalent states results in so-called Follow
automaton:

S a0a

a

4 / 33
STEP March 8th 2023

▲



Introduction

Example: Unified Glushkov
construction
(C.Allauzen, M.Mohri: Math. Found. of Comp. Sci. 2006)

Aims at unifying several NFA constructions using closure+rewriting
approaches over the classical Thompson automaton.

Antimirov automaton

Uses partial derivatives as states.

aa� | ε a�
a

a

4 / 33
STEP March 8th 2023

▲



Introduction

Example: Unified Glushkov
construction
(C.Allauzen, M.Mohri: Math. Found. of Comp. Sci. 2006)

Aims at unifying several NFA constructions using closure+rewriting
approaches over the classical Thompson automaton.

Unified construction

All the three automata can be constructed from Thompson using
the following basis:

merging language-equivalent classes (minimisation);
merging epsilon-equivalent classes (epsilon closure);
annotation and linearization (together with the reverse
operations).

4 / 33
STEP March 8th 2023

▲



Introduction

Main idea

WANTED
A converter of the regular languages representations that is:

Generic: support a larger class of operations;

Trackable: add more visual information and logs to help
a user to track transformations;

Experiment friendly: add possibility to automatically
generate counterexamples by the random search (i.e. to
verify statements experimentally).

(additionally: encourage students to practice in collaborative projects)

Three student groups: Python, C++, Lua.

5 / 33
STEP March 8th 2023

▲



Introduction

Main idea
WANTED
A converter of the regular languages representations that is:

Generic: support a larger class of operations;

Trackable: add more visual information and logs to help
a user to track transformations;

Experiment friendly: add possibility to automatically
generate counterexamples by the random search (i.e. to
verify statements experimentally).

(additionally: encourage students to practice in collaborative projects)

What about the existing solutions? (still, not claiming to be
exhaustive)

5 / 33
STEP March 8th 2023

▲



Existing solutions

Python frameworks
Automata library:

Boolean operations on automata, equivalence and subset
relations, parsing features, some basic automata
generators, classical FA transformations (minimization,
determinization), to-regex transformation.
Plain Graphviz visualization.
Not hard to implement testing feature, provided a random
FA generator with the same API.

6 / 33
STEP March 8th 2023

▲

https://github.com/caleb531/automata


Existing solutions

Python frameworks

Automaton API:
High-level API for designing and
supporting automata structures. Supports
for modifying machines and runner classes.
Customized Graphviz and PlantUML
visualization supported.
Nice library as a starting point.

(still, the Python implementation group failed; and the most successful and
enthusiastic was the C++ group)

6 / 33
STEP March 8th 2023

▲

https://pypi.org/project/automaton/


Existing solutions

Automata library in Wolfram
Mathematica notebook Algorithms on Finite Automata:

More algebraic-fashioned library: supports finding
equivalence relations, equation systems, together with the
traditional FA machinery.
Graph visualisation is poor (was designed more than 20
years ago); but supports other discrete structures
(matrices, systems) in nice LATEX-grained format.

7 / 33
STEP March 8th 2023

▲



Existing solutions

C++ converters
(nothing is new in the Universe)

Grail project, implementing all the classical FA operations
(in 1992)...
...and other, more modern, projects (with Graphviz
support) doing almost the same that was done 30+ years
ago :(

8 / 33
STEP March 8th 2023

▲



Automata converter

Overall design

Main classes: finite automata, regular expressions, regular
grammars, transformation monoids.
Type support: the operations can be chained by a user,
and the inconsistent chains execution is blocked by the
typechecker.
The generic Language class, to cache unique language
properties (minimal DFA, syntactic monoid, pump length).
Input: a simple program consisting of function chains and
assignments.
Output: a LATEX(Beamer) source file with the stepwise
logs of the transformations; the graphs are processed with
dot2tex utility and then modified in Tikz vector
graphics format.

9 / 33
STEP March 8th 2023

▲



Automata converter

Some supported functions
Representation changing

Thompson: Regex -> NFA Antimirov: Regex -> NFA Glushkov: Regex -> NFA
IlieYu: Regex -> NFA Arden: NFA -> Regex

Representation preserving
Determinize: NFA -> DFA Reverse: NFA -> NFA Complement: DFA -> DFA
RemEps: NFA -> NFA Annote: NFA -> DFA DeAnnote: NFA -> NFA
Linearize: Regex -> Regex DeLinearize: NFA ->NFA DeAnnote: Regex -> Regex
Minimize: NFA -> DFA DeLinearize: Regex -> Regex MergeBisim: NFA -> NFA

Many-Sorted functions
PumpLength: Regex -> Int States: NFA -> Int GlaisterShallit: NFA -> Int
ClassLength: DFA -> Int ClassCard: DFA -> Int MyhillNerode: DFA -> Int

Ambiguity: NFA -> Value
Normalize: (Regex,Array) -> Regex

Predicates
Bisimilar: (NFA,NFA) -> t/f Equiv: (NFA,NFA) -> t/f Equal: (NFA,NFA) -> t/f
Minimal: DFA -> t/f Minimal: NFA -> t/f/u SemDet: NFA -> t/f
Subset: (Regex,Regex) -> t/f Subset: (NFA, NFA) -> t/f Equiv: (Regex,Regex) -> t/f

Special forms
Test: (NFA|Regex, Regex,Int) -> IO
Verify: (Predicate,Int) -> Bool

10 / 33
STEP March 8th 2023

▲



Automata converter

Some project details

Input Example
Verify (Equal (DeLinearize (Minimize.Thompson.Linearize *)) (IlieYu *))
R1 = SemDet.RemEps.Thompson {(aa*|)}
R4 = Determinize.Reverse.Determinize.Reverse.Thompson {(aa*|)}
R5 = MergeBisim.Antimirov {(aa*|)}
R6 = RemEps.DeAnnote.Minimize.RemEps.Annote.Thompson {(aa*|)}
Test (Thompson {(a*)*}) {a*b} 10

Frontend

C++ string processing is pain (project members almost gave
up on this point).
The rendering phase is done in a string processing functional
language Refal (tiny interpreter + rapid and natural string
processing features development in terms of generic patterns).
The logs replace the placeholders in the logger patterns
designed in LATEX with the meta-variables in comments.

11 / 33
STEP March 8th 2023

▲



Studying by Transforming

Unified Glushkov: ε-removal paradox

First candidate: pEqualpRemEps.Thompson �qpGlushkov �qq

The hypothesis failed almost for all random regexes!

Let us consider a simple ε-NFA and compute its ε-closures.

q4

q0

q2

q1

q5

q3

ε

ε

a
ε

b
ε

12 / 33
STEP March 8th 2023

▲



Studying by Transforming

Unified Glushkov: ε-removal paradox

q4

q0

q2

q1

q5

q3

ε

ε

a
ε

b
ε

Classical algorithm changing
only transitions in ε-closures:

q4

q1

q5

q3

q0

q2

a

a, b

b

a

b

Algorithm merging ε-closures in the
new classes:

q4, q0, q2

q1, q5

q3, q5

a

b

12 / 33
STEP March 8th 2023

▲



Studying by Transforming

Unified Glushkov: ε-removal paradox
Classical algorithm changing
only transitions in ε-closures:

q4

q1

q5

q3

q0

q2

a

a, b

b

a

b

Algorithm merging ε-closures in the
new classes:

q4, q0, q2

q1, q5

q3, q5

a

b

The algorithm described in the paper:

12 / 33
STEP March 8th 2023

▲



Studying by Transforming

Paradox solution

Do not believe if they say it is elementary and everyone knows it...

Despite the paper describes the usual epsilon-removal
algorithm, it uses the closure epsilon-removal algorithm
instead (which is of no means so well-known).

The algorithm used by the authors is stronger and results
in smaller automata. Using this algorithm, the hypothesis
holds.

13 / 33
STEP March 8th 2023

▲



Studying by Transforming

Symmetry and Brzozowski
minimization

Second candidate:

pEqualpDeterminize.Reverse.Determinize.Reverse.Thompson �q
pMinimize.Thompson �qq

Fails in � 20% cases. Recall the running example: aa� | ε. The
regex defines the language a�, thus its minDFA consists of a single
state.

Let us track the transformations given above for it.

14 / 33
STEP March 8th 2023

▲



Studying by Transforming

Reverse : : NFAÑ NFA
The initial automaton:

q8

q0

q6

q1

q2

q5

q3

q9
q7

ε

ε

a
ε

ε

a
ε

ε

ε

ε ε

The resulting automaton:

q9
q8

q0
q1q2q3q5

q6q7

ε
aε

ε
a

ε

ε

εε

ε

ε

This reversal only switches arrow directions and initial and final states,
because the set of these have cardinality 1.

15 / 33
STEP March 8th 2023

▲



Studying by Transforming

Determinize : : NFAÑ DFA

The initial automaton:

q9
q8

q0
q1q2q3q5

q6q7

ε
aε

ε
a

ε

ε

εε

ε

ε

The resulting automaton:

Q0 Q1
a

a

Everything goes well at this point.

16 / 33
STEP March 8th 2023

▲



Studying by Transforming

Reverse : : NFAÑ NFA

The initial automaton:

Q0 Q1
a

a

The resulting automaton:

RevS Q0

Q1

a
a

ε

ε

The reverse operation is forced to add the new initial state, since there
are multiple final states in the given automaton.

17 / 33
STEP March 8th 2023

▲



Studying by Transforming

Determinize : : NFAÑ DFA

The initial automaton:

RevS Q0

Q1

a
a

ε

ε

The resulting automaton:

Q0 Q1
a

a

And now the subset construction cannot merge this initial state with
anything else, so two states are produced instead of a single one.
Additional merging by bisimilarity is needed to model the effect of
considering multiple starting states.

18 / 33
STEP March 8th 2023

▲



Studying by Transforming

Mystery solution

Practice imposes some constraints on theory...

Brzozowski considered two completely symmetric
structures: algebra and coalgebra. Thus, multiple initial
states are allowed in his construction (and then everything
works).

Real-life FA have a single initial state, so additional
merging by bisimilarity is required to achieve the 100%
verification result.

19 / 33
STEP March 8th 2023

▲



Studying by Transforming

Normalization magic

Third candidate

pEqualpRemEps.DeAnnote.Minimize.RemEps.Annote.Thompson �qpAntimirov �qq

Fails in �20% cases... All the operations are canonical, RemEps is
adequate.

Observation: all the counterexamples contain either pw�q� or
pε | wpwq�q subexpression.

20 / 33
STEP March 8th 2023

▲



Annote

Annote : : NFAÑ DFA

Initial automaton:

q8

q0

q6

q1

q2

q5

q3

q9
q7

ε

ε

a
ε

ε

a
ε

ε

ε

ε ε

Determinized automaton:

q8

q0

q6

q1

q2

q5

q3

q9
q7

E1
E2

a
E1

E2

a
E1 E2

ε

ε ε

In the case of Thompson automaton, it is sufficient to enrich
alphabet only by the two annoted epsilon symbols E1, E2, since
there are at most two non-deterministic transitions from any state.

21 / 33
STEP March 8th 2023

▲



RemEps

RemEps : : NFAÑ NFA

Initial automaton:

q8

q0

q6

q1

q2

q5

q3

q9
q7

E1
E2

a
E1

E2

a
E1 E2

ε

ε ε

Resulting automaton:

q8

q0

q6, q7, q9

q1

q2

q5, q9

q3

E1

E2

a
E1

E2

a
E1 E2

The remaining ε-transitions are removed by the closure. It would be
done by minimisation as well, but we are trying to follow the given
sequence (suggested also for weighted FA) precisely.

22 / 33
STEP March 8th 2023

▲



Minimize

Minimize : : NFAÑ DFA

Initial automaton:

q8 q0

tq6, q7, q9u

q1

q2

tq5, q9u

q3

a

E1

E2

a, E1, E2

E1, E2

a

a, E1, E2

a

E1

E2

E1, E2

a

a, E1, E2

a

E1 E2

Alphabet is no more only a’s, now it is ta, E1, E2u. So the trap state
is added at this point to visualise the remaining possible transitions.

23 / 33
STEP March 8th 2023

▲



Resulting automaton:

C0

C1

C2 C3

E1

E2

a

a
E1, E2

a, E1, E2

a, E1, E2

Equivalence classes:

C0 � tq8, q1, q3u; C1 � tq0, q2u;
C2 � ttq6, q7, q9u, tq5, q9uu;
C3 � tu;

The trap state is shown also in the minimal automaton.

24 / 33
STEP March 8th 2023

▲



DeAnnote

DeAnnote : : NFAÑ NFA

Initial automaton:

C0

C1

C2 C3

E1

E2

a

a
E1, E2

a, E1, E2

a, E1, E2

Resulting automaton:

C0

C1

C2

ε

ε
a

Deannotation collapses alphabet to tau.

25 / 33
STEP March 8th 2023

▲



RemEps

RemEps : : NFAÑ NFA

Initial automaton:

C0

C1

C2

ε

ε
a

Resulting automaton:

C0, C1, C2

a

The given automaton is minimal, so it is expected that the
Antimirov automaton has the single state either.

26 / 33
STEP March 8th 2023
▲



RemEps

Antimirov : : RegexÑ NFA

Regular expression: aa� | ε

Resulting automaton:

aa� | ε a�
a

a

Partial derivatives:
δapaa

� | εq � a� δapa
�q � a�

No mistake: there are two states, not the single one...

27 / 33
STEP March 8th 2023

▲



Studying by Transforming

Paradox solution

Always check the data set first...

The initial regular expressions are normalized (the author
mentions only distributivity, but it seems they used the
normal form, e.g. simplifying pw�q� to w�).

Slightly desorienting assumption, since the main
advantage of the Antimirov derivatives (versus
Brzozowski’s) is their robustness without simplifications.

28 / 33
STEP March 8th 2023

▲



Conclusion

WIWtK starting a collaborative
student project

Give preferences to the languages everyone knows not
quite well.

Choose a project leader basing on stability, not on
enthusiasm.

Testing is crucial: make the testing engine first (and do
not rely on the code reviews too much).

Force the students to release the project before the exam!

29 / 33
STEP March 8th 2023

▲



Conclusion

That’s all!

Thank you for your attention!

And infinitely many thanks to the students who made it possible: A.
Delman, D. Knyazihin, A. Terentyeva, K. Shevchenko, M. Teriykha, A.
Ilyin, A. Chibizova, and V. Lysenko for the slave labor of doing the log
templates.

30 / 33
STEP March 8th 2023

▲



Appendix

Weaker one beats stronger one:
Glaister–Shallit paradox

S, a0

a3

b1

c2

aa
a

b

c

a
b

c
ac

Equivalence classes and distinguishing suffixes:
ab ε b c

ε 1 1 1 1

ba 0 1 0 0

b 0 1 1 1

c 0 1 0 1

Lower bound on the states in NFA: 4
31 / 33

STEP March 8th 2023
▲



Appendix

Orbits and ambiguity

S, a11

a5, b8
c3, a9, a6

a10

tb4, b7u

ta0, a15,
a16u

tb12, b19u

a15, b19

a1

b17

a13
c14

b12

b2

c18

a16

a

a

b

a

b

c

a

b

a c
a

b

a

b

c

a

a, bb

a
b

c
a

32 / 33
STEP March 8th 2023

▲



Appendix

Modelling ReDoS

The parse automaton:

q4

q2

q5

q0

q3

q1

ε

ε

ε

ε

a
ε

ε

ε ε

Regexp for testing: a�b.

Length Parse Time Result
1 1 0.000000 false

2 51 0.015000 false

3 101 0.024000 false

4 151 0.042000 false

5 201 0.048000 false

6 251 0.060000 false

7 301 0.082000 false

8 351 0.089000 false

9 401 0.103000 false

10 451 0.103000 false

11 501 0.116000 false

12 551 0.122000 false

13 601 0.141000 false

33 / 33
STEP March 8th 2023

▲


	Introduction
	Existing solutions
	Automata converter
	Studying by Transforming
	Annote
	RemEps
	Minimize
	DeAnnote
	RemEps
	Studying by Transforming
	Conclusion
	Appendix

