Impressions and results of «Interactions between Proof Assistants and Mathematics» Sep 2023, Regensburg

Nikolai Kudasov, Innopolis University, Oct 13, 2023

ITP-2023 school

- Two weeks Sep 18–29, 2023, Regensburg
- About 50 participants, mostly MS and PhD students (mostly mathematicians) • Lectures + contributed talks (by participants)
- Topics:
 - Proof assistants (Coq, Lean, Rzk, a little bit of Agda, a little bit of LISA)
 - Mathematics (most with formalization exercises):
 - HoTT, ∞ -categories, synthetic algebraic geometry, algebraic type theory, modal type theory, algebraic automata theory
 - History and development of theorem provers (HOL Light)

- Lecture by Mike Shulman
- Great exposition
- Good intuition
- Provoked discussions about modalities for ∞ -categories and adding modalities in Rzk
- Later, I found an interesting paper that builds further on this: <u>arxiv/2301.13780</u>

High level programming

Find Shulman's slides and Agda code at <u>itp-school-2023.github.io/program</u>

- Lecture by Mike Shulman
- Great exposition
- Good intuition
- Provoked discussions about modalities for ∞-categories and adding modalities in Rzk
- Later, I found an interesting paper that builds further on this: arxiv/2301.13780

Find Shulman's slides and Agda code at itp-school-2023.github.io/program

High level mathematics

- Lecture by Mike Shulman
- Great exposition
- Good intuition
- Provoked discussions about modalities for ∞-categories and adding modalities in Rzk
- Later, I found an interesting paper that builds further on this: arxiv/2301.13780

Find Shulman's slides and Agda code at itp-school-2023.github.io/program

The need for discontinuity

In classical mathematics, we have the Intermediate Value Theorem:

Theorem (in classical mathematics)

For any continuous function $f : [a, b] \rightarrow \mathbb{R}$ and point c with f(a) < c < f(b), there exists $x \in [a, b]$ with f(x) = c.

In synthetic topology, where all functions are continuous, we expect to drop the adjective:

Theorem? (in synthetic topology)

For any function $f : [a, b] \to \mathbb{R}$ and point c with f(a) < c < f(b), there exists $x \in [a, b]$ with f(x) = c.

- Lecture by Mike Shulman
- Great exposition
- Good intuition
- Provoked discussions about modalities for ∞-categories and adding modalities in Rzk
- Later, I found an interesting paper that builds further on this: <u>arxiv/2301.13780</u>

Discontinuity

Thus, in synthetic topology we have primitive notions of both (continuous) function and also discontinuous function.

The former form the usual function-types $A \rightarrow B$ and $(x:A) \rightarrow B$; the latter form a new type $(x:^{\flat} A) \rightarrow B$.

Theorem (in (one version of) synthetic topology) $(f :^{\flat} [a, b] \rightarrow \mathbb{R}) \rightarrow (c :^{\flat} \mathbb{R}) \rightarrow (f(a) < c < f(b))$

 $\rightarrow \exists (x \in [a, b]). f(x) = c.$

I'll sketch a proof of this, after introducing more structure.

Find Shulman's slides and Agda code at <u>itp-school-2023.github.io/program</u>

- Lecture by Mike Shulman
- Great exposition
- Good intuition
- Provoked discussions about modalities for ∞-categories and adding modalities in Rzk
- Later, I found an interesting paper that builds further on this: <u>arxiv/2301.13780</u>

Modal operators

We can reify discontinuous functions in two ways:

- (1) $(x : {}^{\flat} A) \to B$ is equivalent to $(x : {}^{\flat} A) \to B$.
 - $\flat A$ is A "retopologized discretely".
 - \flat is a coreflection into the subcategory of discrete types.
- 2 $(x : A) \to B$ is also equivalent to $(x : A) \to \#B$.
 - #B is B "retopologized indiscretely".
 - # is a reflection into the subcategory of indiscrete types.
- **3** It follows that $\flat \dashv \ddagger$.

Such unary type operators are called modalities, after the classical \Box ("It is necessary that...") and \Diamond ("It is possible that...") from modal logic.

Find Shulman's slides and Agda code at <u>itp-school-2023.github.io/program</u>

ITP-2023 highlight #2: Lean

- Tutorials by Jannis Limperg
- Good examples
- Interactive sessions
- I was particularly interested in syntactic choices, such as calc mode

/- ##	C
examp	le
(ху
cal	С
f	a
-	
_	

alc Mode -/

{fg: $\alpha \rightarrow \beta \rightarrow \gamma$ } (fg: f = g) (ab : a = b) (bc : b = c) : x = y) : f a x = g c y := byx = f b x := by rw [ab]= f c x := by rw [bc]= f c y := by rw [xy]= g c y := by rw [fg]

Find Limperg's material on GitHub at <u>JLimperg/regensburg-itp-school-2023</u>

ITP-2023 highlight #3: Rzk and sHoTT (before)

- Rzk version 0.5.4
- 3 users (Emily, Jonathan, and Fredrik Bakke)
- Formalized the ∞ -categorical Yoneda lemma
 - joint with Emily Riehl and Jonathan Weinberger
 - emilyriehl/yoneda
 - <u>arxiv/2309.08340</u>
- Started HoTT Book formalisation (for students):
 - <u>rzk-lang.github.io/hottbook</u>

ITP-2023 highlight #3: Rzk and sHoTT (after)

- Rzk version 0.6.4 (latest is 0.6.7) 8 releases in 8 working days :)
- Rzk Language Server integrated with VS Code (thanks to Abdelrahman)
- 15+ active users, see contributions to <u>rzk-lang.github.io/sHoTT</u>
 - <u>rzk-lang.github.io/sHoTT/CONTRIBUTORS</u>
- 30+ participants in Rzk Zulip: <u>rzk-lang.zulipchat.com</u>
- Many people (more than I expected) interested in Rzk and its further development
- Many directions for future work:
 - (Directed) Higher-inductive types, Modalities, (∞,∞) -categories
 - Better IDE support