
Relational Solver for
JAVA Generics Type System

Peter Lozov Dmitry Kosarev Dmitry Ivanov Dmitry Boulytchev

Saint Petersburg State University

STEP
December 15, 2023

JAVA Language

One of the most popular high-level programming languages

An active research topic is approaches and tools for JAVA code
verification and testing

One of the prominent method for software testing is symbolic
execution

2 / 28

JAVA Generics Type Solver

Our experience shows that JAVA generics type solver is a crucial
part of symbolic execution engine

Difficult to implement directly
α ≺≺ List<AtomicBoolean> ∧
Vector<T> ≺≺ α

Subtyping relation in JAVA with generics is undecidable

The verifier can be implemented according to the JAVA
Language Specification1 (JLS)

Relational programming will allow the verifier to be used as a solver

1https://docs.oracle.com/javase/specs/jls/se20/jls20.pdf
3 / 28

https://docs.oracle.com/javase/specs/jls/se20/jls20.pdf

JAVA Generics Type System
JAVA type subsystem we are dealing with contains

class Object

interface List<T>
extends Collection<E>

class TreeMap<K, V>
extends AbstractMap<K, V>
implements NavigableMap<K, V>, Cloneable

interface Term<T extends Term<T>>

void foo(Collection<? extends Destroyable> x)

void bar(Collection<? super Integer> x)

4 / 28

Why do We Need the JAVA Generics Type Solver?
static<T> Set<T> makeSingleton(T firstElement) {

Set set ;
if (firstElement instanceof Integer) {

set = new TreeSet<T>();
}
else if (firstElement instanceof String) {

set = new HashSet<T>();
}
else {

throw new IllegalArgumentException(” Incorrect generic parameter”) ;
}
set .add(firstElement) ;
return set ;

}

5 / 28

Why do We Need the JAVA Generics Type Solver?

static<T> Set<T> makeSingleton(T firstElement) {
. . .

}

public static void main(String [] args) {
var set1 = makeSingleton(1); / / OK
var set2 = makeSingleton(”2”) ; / / OK
var set3 = makeSingleton(3.0); / / Exception

}

Runtime error instead of compile time error

5 / 28

Why do We Need the JAVA Generics Type Solver?

static<T> Set<T> makeSingleton(T firstElement) {
. . .

}

public static void main(String [] args) {
var set1 = makeSingleton(1); / / OK
var set2 = makeSingleton(”2”) ; / / OK
var set3 = makeSingleton(3.0); / / Exception

}

Runtime error instead of compile time error

5 / 28

Why do We Need the JAVA Generics Type Solver?

Automatic synthesis of test input data by type of arguments

void foo(Collection<? extends Destroyable> x) {
. . .

}

Need to find an arbitrary instantiated subtype of
Collection<? extends Destroyable>

6 / 28

Why do We Need the JAVA Generics Type Solver?

Automatic synthesis of test input data by type of arguments

void foo(Collection<? extends Destroyable> x) {
. . .

}

Need to find an arbitrary instantiated subtype of
Collection<? extends Destroyable>

6 / 28

Relational Programming

Approach based on the idea of describing programs as relations
Can be considered as a branch of logic programming
Without non-relational constructs such as side effects or extra-logical
features
Uses interleaving search strategy , which is known to be complete

Conventional relational language is MINIKANREN2

Initially embedded DSL for SCHEME/RACKET

Ported to many host languages such as SCALA, HASKELL, JAVA, etc.
We use a strongly-typed implementation for OCAML, called OCANREN

2http://minikanren.org/
7 / 28

http://minikanren.org/

Relational Reverse Computations

MINIKANREN allows to express reverse computations

Some complicated programs considered as an inversions of
simpler programs

List sorting⇐⇒ All permutations generating
Type inference⇐⇒ Type inhabitation problem

In particular, solvers are inversions of verifiers
Verifiers is often easier to implement

8 / 28

Functional vs. Relational Addition Implementation

let rec add x y =
match x with
| Z → y
| S xs → S (add xs y)

let rec addo x y z =
ocanren {
x ≡ Z ∧ z ≡ y ∨
fresh xs , zs in
x ≡ S xs ∧
z ≡ S zs ∧
addo xs y zs}

9 / 28

Functional vs. Relational Addition Implementation

let rec add x y =
match x with
| Z → y
| S xs → S (add xs y)

let rec addo x y z =
ocanren {
x ≡ Z ∧ z ≡ y ∨
fresh xs , zs in
x ≡ S xs ∧
z ≡ S zs ∧
addo xs y zs}

addo (S Z) (S Z) α =⇒ [α = S S Z]

addo α (S Z) (S S Z) =⇒ [α = S Z]

9 / 28

Functional vs. Relational Addition Implementation

let rec add x y =
match x with
| Z → y
| S xs → S (add xs y)

let rec addo x y z =
ocanren {
x ≡ Z ∧ z ≡ y ∨
fresh xs , zs in
x ≡ S xs ∧
z ≡ S zs ∧
addo xs y zs}

addo (S Z) (S Z) α =⇒ [α = S S Z]

addo α (S Z) (S S Z) =⇒ [α = S Z]

9 / 28

Functional vs. Relational Addition Implementation

let rec add x y =
match x with
| Z → y
| S xs → S (add xs y)

let rec addo x y z =
ocanren {
x ≡ Z ∧ z ≡ y ∨
fresh xs , zs in
x ≡ S xs ∧
z ≡ S zs ∧
addo xs y zs}

addo α β (S S Z) =⇒

 α = Z, β = S S Z;
α = S Z, β = S Z;

α = S S Z, β = Z

9 / 28

Relational Conversion

In many cases it is easier to obtain relational program from
functional one

We use typed relational conversion tool, called NOCANREN

In practice we mix hand-written and converted relational code

10 / 28

Relational Solver for JAVA Generics Type System

Solving a system of subtyping inequations for JAVA generic types
with free variables

Using relational programming techniques and verifier-to-solver
approach

Applying a number of problem-specific optimizations for boosting
the performance

11 / 28

JAVA Type Table
Iterable⟨E⟩

Collection⟨E⟩

Set⟨E⟩ List⟨E⟩Queue⟨E⟩AbstractCollection⟨E⟩

RandomAccess

ArrayList⟨E⟩Vector⟨E⟩

SortedSet⟨E⟩AbstractSet⟨E⟩

HashSet⟨E⟩

LinkedHashSet⟨E⟩

AbstractList⟨E⟩

LinkedList⟨E⟩

Deque⟨E⟩BlockingQueue⟨E⟩AbstractQueue⟨E⟩

NavigableSet⟨E⟩ BlockingDeque⟨E⟩

ConcurrentSkipListSet⟨E⟩ TreeSet⟨E⟩

ArrayBlockingQueue⟨E⟩

LinkedBlockingDeque⟨E⟩

AbstractSequentialList⟨E⟩

AttributeList

E is
Object

RoleList

E is
Object

Stack⟨E⟩

12 / 28

Direct Subtyping Relation
C
〈

α
U1
1 . . .αUk

k

〉
≺ S ⟨T1 . . .Tn⟩ , S is a direct supertype of C

C ⟨T1 . . .Tk⟩ ≺ C ⟨S1 . . .Sk⟩ , ∀i .Si ⊇ Ti

C ⟨T1 . . .Tk⟩ ≺ S , C ⟨⌊T1⌋ . . .⌊Tk⌋⟩ ≺ S⋂
Ti ≺ Ti

α
⋂

Ti ≺ Ti

T ≺ αT

null ≺ T

I ≺ Object , I is an interface with no
direct superinterface

T[] ≺ S[] , T ≺ S

Object[] ≺ Object

Object[] ≺ Cloneabe

Object[] ≺ Serializable

13 / 28

Functional Verifier of Subtyping Relation
verify(x , y) =

If I is an interface then if x is an interface && y = Object
I ≺ Object then true

if T ≺ S then elif x = t [] && y = s [] && verify(t , s)
T [] ≺ S[] then true

Object[] ≺ Object elif x = Object [] && y = Object
then true

Object[] ≺ Cloneabe elif x = Object [] && y = Cloneable
then true

Object[] ≺ Serializable elif x = Object [] && y = Serializable
then true

else false
14 / 28

Relational Direct Subtyping Solver

Functional verifier was implemented in OCAML
Straightforward implementation according to JLS
Verifier tests if two given ground types are in the subtyping relation

Relational verifier was generated using NOCANREN
Verifier searches for all substitutions for free variables in incomplete
types to make them subtype of each other
We excluded some JLS components from the implementation to ensure
only instantiable classes to appear in answers

Capture conversion
contains relation

15 / 28

Unsoundness of Direct Subtyping

By JLS definition of direct subtyping A≺ αB
A

αB
A ≺ B

⇒ A≺≺ B

We found no explicitly requirement in JLS that a type variable αB
A

have consistent bounds

16 / 28

Unsoundness of Direct Subtyping

By JLS definition of direct subtyping A≺ αB
A

αB
A ≺ B

⇒ A≺≺ B

We found no explicitly requirement in JLS that a type variable αB
A

have consistent bounds

16 / 28

Unsoundness of Direct Subtyping

By JLS definition of direct subtyping A≺ αB
A

αB
A ≺ B

⇒ A≺≺ B

We found no explicitly requirement in JLS that a type variable αB
A

have consistent bounds

16 / 28

Reflexivity of Direct Subtyping

Type C⟨T1, . . . , Tn⟩ is a direct subtype of itself by JLS definition of
direct subtyping

As a result, there are an infinite number of ways to prove that type T1
is a subtype of T2

17 / 28

Reflexivity of Direct Subtyping

Type C⟨T1, . . . , Tn⟩ is a direct subtype of itself by JLS definition of
direct subtyping

As a result, there are an infinite number of ways to prove that type T1
is a subtype of T2

17 / 28

Relational Subtyping Solver

Reflexive-transitive R∗ closure for given relation R can be
expressed in MINIKANREN directly by

R∗ (x , y) = x ≡ y ∨∃z .R (x , z)∧R∗ (z, y)

Hand-written relation

18 / 28

Relational Subtyping Solver Optimizations
Simplifying a representation of class and interface identifiers

Peano numbers was replaced with integers manually

Dynamic transitive closure evaluation
Two closure implementations for finding subtypes and supertypes
Dynamic selection of the optimal implementation depending on the
arguments groundness

Dynamic class table specialization
Direct supertypes statically evaluated from the class table for each
class and interface
Dynamically generated relation depending on the class whose
supertypes need to be found

Removing duplicate answers

19 / 28

Dynamic Transitive Closure Evaluation

−→
R ∗ (x , y) = x ≡ y ∨∃z .R (x , z)∧−→R ∗ (z, y)
←−
R ∗ (x , y) = x ≡ y ∨∃z .R (z, y)∧←−R ∗ (x , z)

R∗ (x , y) =

{ −→
R ∗ (x , y), if x is ground
←−
R ∗ (x , y), otherwise

20 / 28

Dynamic Transitive Closure Evaluation

−→
R ∗ (x , y) = x ≡ y ∨∃z .R (x , z)∧−→R ∗ (z, y)
←−
R ∗ (x , y) = x ≡ y ∨∃z .R (z, y)∧←−R ∗ (x , z)

R∗ (x , y) =

{ −→
R ∗ (x , y), if x is ground
←−
R ∗ (x , y), otherwise

20 / 28

Dynamic Class Table Specialization

sub_id = α1 super_id = α2

let get_superclass_id sub_id super_id =
(sub_id ≡ 4 ∧ super_id ≡ 1) ∨

(sub_id ≡ 5 ∧ super_id ≡ 4) ∨
(sub_id ≡ 6 ∧ super_id ≡ 4) ∨

(sub_id ≡ 7 ∧ super_id ≡ 5) ∨
(sub_id ≡ 8 ∧ super_id ≡ 5) ∨
(sub_id ≡ 9 ∧ super_id ≡ 5)

21 / 28

Dynamic Class Table Specialization

sub_id = α1 super_id = 4

let get_superclass_id sub_id super_id =
(sub_id ≡ 4 ∧ super_id ≡ 1) ∨

(sub_id ≡ 5 ∧ super_id ≡ 4) ∨
(sub_id ≡ 6 ∧ super_id ≡ 4) ∨

(sub_id ≡ 7 ∧ super_id ≡ 5) ∨
(sub_id ≡ 8 ∧ super_id ≡ 5) ∨
(sub_id ≡ 9 ∧ super_id ≡ 5)

21 / 28

Dynamic Class Table Specialization

sub_id = 8 super_id = 5

let get_superclass_id sub_id super_id =
(sub_id ≡ 4 ∧ super_id ≡ 1) ∨

(sub_id ≡ 5 ∧ super_id ≡ 4) ∨
(sub_id ≡ 6 ∧ super_id ≡ 4) ∨

(sub_id ≡ 7 ∧ super_id ≡ 5) ∨
(sub_id ≡ 8 ∧ super_id ≡ 5) ∨
(sub_id ≡ 9 ∧ super_id ≡ 5)

21 / 28

Removing Duplicate Answers

Transitive closure builds all possible paths between a subtype
and a supertype

Due to multiple inheritance of interfaces, several paths are possible
One path corresponds one answer

Truncation of duplicate branches
Let’s memorize the already calculated answers
In unfinished search branches, we monitor the query variable
If query variable corresponds to one of the answers found, we fail this
branch early

22 / 28

Removing Duplicate Answers

Transitive closure builds all possible paths between a subtype
and a supertype

Due to multiple inheritance of interfaces, several paths are possible
One path corresponds one answer

Truncation of duplicate branches
Let’s memorize the already calculated answers
In unfinished search branches, we monitor the query variable
If query variable corresponds to one of the answers found, we fail this
branch early

22 / 28

Removing Duplicate Answers

If there is only one subtyping inequation in the system, we will
simply remove duplicates

Transitive closure finds the answer only in the last step
Until the answer is found, we cannot determine if it is a duplicate

If there is more than one inequation, some branches will fail
early

For the first inequation we are looking for all the answers
For the second and subsequent inequations, we verify the answers for
the first inequality

23 / 28

Removing Duplicate Answers

If there is only one subtyping inequation in the system, we will
simply remove duplicates

Transitive closure finds the answer only in the last step
Until the answer is found, we cannot determine if it is a duplicate

If there is more than one inequation, some branches will fail
early

For the first inequation we are looking for all the answers
For the second and subsequent inequations, we verify the answers for
the first inequality

23 / 28

Evaluation
Real class table containing more than 40000 classes and
interfaces

9 benchmark queries of various shapes
α ≺≺ java.util.List<Object>

α ≺≺ java.util.AbstractCollection<Object> ∧
α ≺≺ java.util.RandomAccess ∧
α ≺≺ java.util.List<Object>

javax.management.AttributeList ≺≺ α

kotlinx.collections.PersistentVector<Object> ≺≺ α ∧
javax.management.AttributeList ≺≺ α ∧
com.google.common.collect.ImmutableSortedSet<Object> ≺≺ α

kotlinx.collections.PersistentVector<Object> ≺≺ α ∧
α ≺≺ java.util.List<Object>

24 / 28

Evaluation
4 versions of the solver

With no optimizations
With dynamic transitive closure evaluation only
With dynamic class table specialization only
With both optimizations

2 quantitative measures
Overall number of answers
Number of unique answers

4 time measures
Time of calculating the first answer
Maximal time for one answer
Average time taken over all answers
Total evaluation time

25 / 28

Evaluation Results
Time of the first answer

Average time of answers

Maximum time for one answer

Total evaluation time
No answer after 300 seconds

Time

0.1 ms

1 ms

10 ms

0.1 sec

1 sec

10 sec

100 sec

130/190 46/47 46/47 46/61 11/22 4/173 3/882 6/13 6/13

26 / 28

Conclusion

Developed JAVA generic type solver using relational conversion
and verifier-to-solver techniques

Optimized the solver to improve the performance

Evaluated the solver performance using real world JAVA class
table and realistic benchmarks

27 / 28

Future Work

Sorting the inequalities to improve performance

Integrating the solver into our symbolic execution engine

Supporting negative inequalities
Type α is not subtype of β

Type α is not supertype of β

28 / 28

