Relational Solver for JAVA Generics Type System

Peter Lozov Dmitry Kosarev Dmitry Ivanov Dmitry Boulytchev

Saint Petersburg State University

STEP December 15, 2023



- One of the most popular high-level programming languages
- An active research topic is approaches and tools for JAVA code verification and testing
- One of the prominent method for software testing is symbolic execution

## JAVA Generics Type Solver

Our experience shows that **JAVA** *generics type solver* is a crucial part of symbolic execution engine

- Difficult to implement directly
  - $\alpha \prec \text{List} \wedge \alpha$ Vector T>  $\prec \alpha$
- Subtyping relation in JAVA with generics is undecidable
- The verifier can be implemented according to the JAVA Language Specification<sup>1</sup> (JLS)
  - Relational programming will allow the verifier to be used as a solver

<sup>&</sup>lt;sup>1</sup>https://docs.oracle.com/javase/specs/jls/se20/jls20.pdf

## JAVA Generics Type System

JAVA type subsystem we are dealing with contains

- class Object
- interface List<T> extends Collection<E>
- class TreeMap<K, V>
   extends AbstractMap<K, V>
   implements NavigableMap<K, V>, Cloneable
- interface Term<T extends Term<T>>
- void foo(Collection<? extends Destroyable> x)
- void bar(Collection<? super Integer> x)

```
static <T> Set<T> makeSingleton(T firstElement) {
```

```
Set set:
if (firstElement instanceof Integer) {
   set = new TreeSet<T>();
else if (firstElement instanceof String) {
   set = new HashSet<T>();
else {
   throw new IllegalArgumentException("Incorrect generic parameter");
set.add(firstElement):
return set:
```

static <T> Set<T> makeSingleton(T firstElement) {

. . .

```
public static void main(String[] args) {
    var set1 = makeSingleton(1); // OK
    var set2 = makeSingleton("2"); // OK
    var set3 = makeSingleton(3.0); // Exception
```

static <T> Set<T> makeSingleton(T firstElement) {

. . .

```
public static void main(String[] args) {
    var set1 = makeSingleton(1); // OK
    var set2 = makeSingleton("2"); // OK
    var set3 = makeSingleton(3.0); // Exception
```

#### Runtime error instead of compile time error

Automatic synthesis of test input data by type of arguments

void foo(Collection<? extends Destroyable> x) {

. . .

}

Automatic synthesis of test input data by type of arguments

```
void foo(Collection<? extends Destroyable> x) {
```

. . .

# Need to find an arbitrary instantiated subtype of Collection<? extends Destroyable>

## **Relational Programming**

- Approach based on the idea of describing programs as relations
  - Can be considered as a branch of *logic programming*
  - Without non-relational constructs such as side effects or extra-logical features
  - Uses *interleaving search strategy*, which is known to be complete
- Conventional relational language is MINIKANREN<sup>2</sup>
  - Initially embedded DSL for SCHEME/RACKET
  - Ported to many host languages such as SCALA, HASKELL, JAVA, etc.
  - We use a strongly-typed implementation for OCAML, called OCANREN

<sup>&</sup>lt;sup>2</sup>http://minikanren.org/

#### **Relational Reverse Computations**

- MINIKANREN allows to express *reverse computations*
- Some complicated programs considered as an inversions of simpler programs
  - List sorting  $\iff$  All permutations generating
  - Type inference  $\iff$  Type inhabitation problem
- In particular, *solvers* are inversions of *verifiers* 
  - Verifiers is often easier to implement

 let rec add<sup>o</sup> x y z =
 ocanren {
 x  $\equiv$  Z  $\land$  z  $\equiv$  y  $\lor$  fresh xs, zs in
 x  $\equiv$  S xs  $\land$  z  $\equiv$  S zs  $\land$  add<sup>o</sup> xs y zs}

let rec add x y =
match x with
| Z → y
| S xs → S (add xs y)

let rec add<sup>o</sup> x y z =
 ocanren {
 x = Z \land z = y \v
 fresh xs, zs in
 x = S xs \land
 z = S zs \land
 add<sup>o</sup> xs y zs}

add
$$^o$$
 (S Z) (S Z)  $\alpha \Longrightarrow [\alpha =$  S S Z]

let rec add x y =
match x with
| Z → y
| S xs → S (add xs y)

let rec add<sup>o</sup> x y z =
 ocanren {
 x = Z \land z = y ∨
 fresh xs, zs in
 x = S xs ∧
 z = S zs ∧
 add<sup>o</sup> xs y zs}

add<sup>o</sup> (S Z) (S Z) 
$$\alpha \implies [\alpha = s s Z]$$
  
add<sup>o</sup>  $\alpha$  (S Z) (S S Z)  $\implies [\alpha = s Z]$ 

 let rec add<sup>o</sup> x y z =
 ocanren {
 x = Z \land z = y ∨
 fresh xs, zs in
 x = S xs ∧
 z = S zs ∧
 add<sup>o</sup> xs y zs}

add<sup>o</sup> 
$$\alpha \beta$$
 (s s z)  $\implies \begin{bmatrix} \alpha = Z, & \beta = S S Z; \\ \alpha = S Z, & \beta = S Z; \\ \alpha = S S Z, & \beta = Z \end{bmatrix}$ 

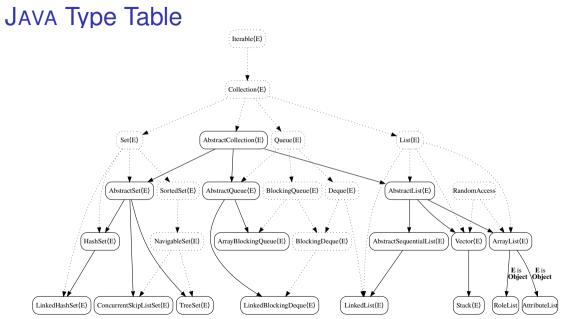
#### **Relational Conversion**

- In many cases it is easier to obtain relational program from functional one
- We use *typed relational conversion* tool, called NOCANREN
- In practice we mix hand-written and converted relational code

## Relational Solver for JAVA Generics Type System

Solving *a system of subtyping inequations* for JAVA generic types with free variables

- Using *relational programming* techniques and verifier-to-solver approach
- Applying a number of problem-specific optimizations for boosting the performance



#### **Direct Subtyping Relation**

С

, S is a direct supertype of C

$$, \quad \forall i \, . \, S_i \supseteq T_i$$

, 
$$C \langle \lfloor T_1 \rfloor \ldots \lfloor T_k \rfloor \rangle \prec S$$

, *I* is an interface with no direct superinterface

 $, T \prec S$ 

#### Functional Verifier of Subtyping Relation

|                            |         | e <b>rface then</b><br>Object |
|----------------------------|---------|-------------------------------|
| if <i>T</i><br><i>T</i> [] |         | <i>S</i> then<br><i>S</i> []  |
| Object[]                   | $\prec$ | Object                        |
| Object[]                   | $\prec$ | Cloneabe                      |
| Object[]                   | $\prec$ | Serializable                  |
|                            |         |                               |

verify(x, y) =

if x is an interface && y = Object
 then true

elif x = t[] && y = s[] && verify(t, s)
 then true

then true

elif x = Object[] && y = Cloneable
 then true

elif x = Object[] && y = Serializable
 then true

else false

## **Relational Direct Subtyping Solver**

- Functional verifier was implemented in OCAML
  - Straightforward implementation according to JLS
  - Verifier tests if two given ground types are in the subtyping relation
- Relational verifier was generated using NOCANREN
  - Verifier searches for all substitutions for free variables in incomplete types to make them subtype of each other
  - We excluded some JLS components from the implementation to ensure only instantiable classes to appear in answers
    - Capture conversion
    - ontains relation

#### Unsoundness of Direct Subtyping

By JLS definition of direct subtyping

$$\left\{ \begin{array}{l} A \prec \alpha^B_A \\ \\ \alpha^B_A \prec B \end{array} \right.$$

#### Unsoundness of Direct Subtyping

By JLS definition of direct subtyping

$$\begin{cases} A \prec \alpha_A^B \\ & \Rightarrow \quad A \prec \prec B \\ \alpha_A^B \prec B \end{cases}$$

#### Unsoundness of Direct Subtyping

By JLS definition of direct subtyping

$$\begin{cases} A \prec \alpha_A^B \\ & \Rightarrow \quad A \prec \prec B \\ \alpha_A^B \prec B \end{cases}$$

We found no explicitly requirement in JLS that a type variable  $\alpha_A^B$  have consistent bounds

## **Reflexivity of Direct Subtyping**

## Type $C\langle T_1, ..., T_n \rangle$ is a direct subtype of itself by JLS definition of direct subtyping

## **Reflexivity of Direct Subtyping**

# Type $C\langle T_1, ..., T_n \rangle$ is a direct subtype of itself by JLS definition of direct subtyping

As a result, there are an infinite number of ways to prove that type  $T_1$  is a subtype of  $T_2$ 

#### **Relational Subtyping Solver**

 Reflexive-transitive R\* closure for given relation R can be expressed in MINIKANREN directly by

$$R^*(x,y) = x \equiv y \lor \exists z . R(x,z) \land R^*(z,y)$$

• Hand-written relation

## **Relational Subtyping Solver Optimizations**

- Simplifying a representation of class and interface identifiers
  - Peano numbers was replaced with integers manually
- Dynamic transitive closure evaluation
  - Two closure implementations for finding subtypes and supertypes
  - Dynamic selection of the optimal implementation depending on the arguments groundness
- Dynamic class table specialization
  - Direct supertypes statically evaluated from the class table for each class and interface
  - Dynamically generated relation depending on the class whose supertypes need to be found
- Removing duplicate answers

#### **Dynamic Transitive Closure Evaluation**

$$\overrightarrow{R}^*(x, y) = x \equiv y \lor \exists z . R(x, z) \land \overrightarrow{R}^*(z, y)$$
  
 $\overleftarrow{R}^*(x, y) = x \equiv y \lor \exists z . R(z, y) \land \overleftarrow{R}^*(x, z)$ 

#### **Dynamic Transitive Closure Evaluation**

$$\overrightarrow{R}^*(x,y) = x \equiv y \lor \exists z . R(x,z) \land \overrightarrow{R}^*(z,y)$$
  
 $\overleftarrow{R}^*(x,y) = x \equiv y \lor \exists z . R(z,y) \land \overleftarrow{R}^*(x,z)$ 

$$R^*(x,y) = \left\{ egin{array}{c} \overrightarrow{R}^*(x,y), ext{ if } x ext{ is ground} \ \overleftarrow{R}^*(x,y), ext{ otherwise} \end{array} 
ight.$$

#### **Dynamic Class Table Specialization**

 $\text{sub\_id} = \alpha_1$   $\text{super\_id} = \alpha_2$ 

let get\_superclass\_id sub\_id super\_id =
 (sub\_id ≡ 4 ∧ super\_id ≡ 1) ∨

$$(sub_id \equiv 5 \land super_id \equiv 4) \lor$$
  
 $(sub_id \equiv 6 \land super_id \equiv 4) \lor$ 

 $(sub\_id \equiv 7 \land super\_id \equiv 5) \lor$  $(sub\_id \equiv 8 \land super\_id \equiv 5) \lor$  $(sub\_id \equiv 9 \land super\_id \equiv 5)$ 

#### **Dynamic Class Table Specialization**

 $sub_id = \alpha_1 \quad super_id = 4$ 

let get\_superclass\_id sub\_id super\_id =
 (sub\_id ≡ 4 ∧ super\_id ≡ 1) ∨

$$(sub_id \equiv 5 \land super_id \equiv 4) \lor (sub_id \equiv 6 \land super_id \equiv 4) \lor$$

```
(sub\_id \equiv 7 \land super\_id \equiv 5) \lor
(sub\_id \equiv 8 \land super\_id \equiv 5) \lor
(sub\_id \equiv 9 \land super\_id \equiv 5)
```

#### **Dynamic Class Table Specialization**

 $sub_id = 8$   $super_id = 5$ 

```
let get_superclass_id sub_id super_id =
  (sub_id ≡ 4 ∧ super_id ≡ 1) ∨
```

```
(sub_id \equiv 5 \land super_id \equiv 4) \lor
(sub_id \equiv 6 \land super_id \equiv 4) \lor
```

```
(sub\_id \equiv 7 \land super\_id \equiv 5) \lor
(sub\_id \equiv 8 \land super\_id \equiv 5) \lor
(sub\_id \equiv 9 \land super\_id \equiv 5)
```

- Transitive closure builds all possible paths between a subtype and a supertype
  - Due to multiple inheritance of interfaces, several paths are possible
  - One path corresponds one answer

- Transitive closure builds all possible paths between a subtype and a supertype
  - Due to multiple inheritance of interfaces, several paths are possible
  - One path corresponds one answer
- Truncation of duplicate branches
  - Let's memorize the already calculated answers
  - In unfinished search branches, we monitor the query variable
  - If query variable corresponds to one of the answers found, we fail this branch early

- If there is only one subtyping inequation in the system, we will simply remove duplicates
  - Transitive closure finds the answer only in the last step
  - Until the answer is found, we cannot determine if it is a duplicate

- If there is only one subtyping inequation in the system, we will simply remove duplicates
  - Transitive closure finds the answer only in the last step
  - Until the answer is found, we cannot determine if it is a duplicate
- If there is more than one inequation, some branches will fail early
  - For the first inequation we are looking for all the answers
  - For the second and subsequent inequations, we verify the answers for the first inequality

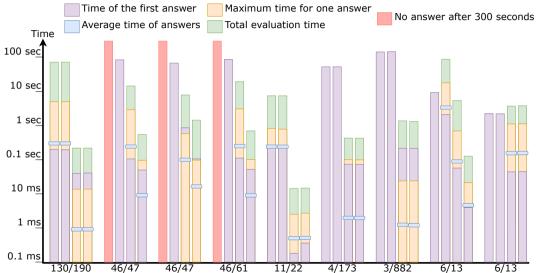
#### **Evaluation**

- Real class table containing more than 40000 classes and interfaces
- 9 benchmark queries of various shapes
  - $\alpha \prec\!\!\prec$  java.util.List<Object>
  - $\alpha \prec java.util.AbstractCollection<Object> \land$  $\alpha \prec java.util.RandomAccess \land$  $\alpha \prec java.util.List<Object>$
  - javax.management.AttributeList  $\prec\!\!\prec \alpha$
  - kotlinx.collections.PersistentVector<0bject>  $\prec \propto \alpha \land$  javax.management.AttributeList  $\prec \propto \alpha \land$  com.google.common.collect.ImmutableSortedSet<0bject>  $\prec \propto \alpha$
  - kotlinx.collections.PersistentVector<Object> → α ∧ α → java.util.List<Object>

## **Evaluation**

- 4 versions of the solver
  - With no optimizations
  - With dynamic transitive closure evaluation only
  - With dynamic class table specialization only
  - With both optimizations
- 2 quantitative measures
  - Overall number of answers
  - Number of unique answers
- 4 time measures
  - Time of calculating the first answer
  - Maximal time for one answer
  - Average time taken over all answers
  - Total evaluation time

## **Evaluation Results**



#### Conclusion

- Developed JAVA generic type solver using relational conversion and verifier-to-solver techniques
- Optimized the solver to improve the performance
- Evaluated the solver performance using real world JAVA class table and realistic benchmarks

#### **Future Work**

- Sorting the inequalities to improve performance
- Integrating the solver into our symbolic execution engine
- Supporting negative inequalities
  - Type  $\alpha$  is **not** subtype of  $\beta$
  - Type  $\alpha$  is **not** supertype of  $\beta$