Relational Solver for
JAVA Generics Type System

Peter Lozov Dmitry Kosarev Dmitry Ivanov Dmitry Boulytchev

Saint Petersburg State University

STEP
December 15, 2023

JAVA Language

@ One of the most popular high-level programming languages

@ An active research topic is approaches and tools for JAVA code
verification and testing

@ One of the prominent method for software testing is symbolic
execution

2/28

JAVA Generics Type Solver

Our experience shows that JAVA generics type solver is a crucial
part of symbolic execution engine

@ Difficult to implement directly
@ O << List<AtomicBoolean> A
Vector<T> << O

@ Subtyping relation in JAVA with generics is undecidable
@ The verifier can be implemented according to the JAVA
Language Specification' (JLS)

@ Relational programming will allow the verifier to be used as a solver

Thttps://docs.oracle.com/javase/specs/jls/se20/31s20.pdf
3/28

https://docs.oracle.com/javase/specs/jls/se20/jls20.pdf

JAVA Generics Type System
JAVA type subsystem we are dealing with contains

class Object

interface List<T>
extends Collection<E>

class TreeMap<K, V>
extends AbstractMap<K, V>
implements NavigableMap<K, V>, Cloneable

interface Term<T extends Term<T>>
void foo(Collection<? extends Destroyable> x)

void bar (Collection<? super Integer> x)

4/28

Why do We Need the JAVA Generics Type Solver?

static <T> Set<T> makeSingleton(T firstElement) {
Set set;
if (firstElement instanceof Integer) {
set = new TreeSet<I>();
}

else if (firstElement instanceof String) {
set = new HashSet<I>();

else {
throw new IllegalArgumentException(”Incorrect generic parameter”);

set.add(firstElement);
return set;

5/28

Why do We Need the JAVA Generics Type Solver?

static <T> Set<T> makeSingleton(T firstElement) {

L

public static void main(String[] args) {
var setl = makeSingleton(1); // OK
var set2 = makeSingleton(”2”); // OK
var set3 = makeSingleton(3.0); // Exception

5/28

Why do We Need the JAVA Generics Type Solver?

static <T> Set<T> makeSingleton(T firstElement) {

L

public static void main(String[] args) {
var setl = makeSingleton(1); // OK
var set2 = makeSingleton(”2”); // OK
var set3 = makeSingleton(3.0); // Exception

Runtime error instead of compile time error

5/28

Why do We Need the JAVA Generics Type Solver?

Automatic synthesis of test input data by type of arguments

void foo(Collection<? extends Destroyable> x) {

}

6/28

Why do We Need the JAVA Generics Type Solver?

Automatic synthesis of test input data by type of arguments

void foo(Collection<? extends Destroyable> x) {

}

Need to find an arbitrary instantiated subtype of
Collection<? extends Destroyable>

6/28

Relational Programming

@ Approach based on the idea of describing programs as relations
@ Can be considered as a branch of logic programming
@ Without non-relational constructs such as side effects or extra-logical
features
@ Uses interleaving search strategy, which is known to be complete

@ Conventional relational language is MINIKANREN?
@ Initially embedded DSL for SCHEME/RACKET
@ Ported to many host languages such as SCALA, HASKELL, JAVA, etc.
@ We use a strongly-typed implementation for OCAML, called OCANREN

®http://minikanren.org/
7128

http://minikanren.org/

Relational Reverse Computations

@ MINIKANREN allows to express reverse computations

@ Some complicated programs considered as an inversions of
simpler programs
@ List sorting <= All permutations generating
@ Type inference <= Type inhabitation problem

@ In particular, solvers are inversions of verifiers
@ Verifiers is often easier to implement

8/28

Functional vs. Relational Addition Implementation

let rec add® x y z =
ocanren {

let rec add x y = X=71 A z=y V

match x with .

B Sy fresh xs, zs in
X=S xs A

| S xs — S (add xs y) S =5 25 A

add® xs y zs}

9/28

Functional vs. Relational Addition Implementation

let rec add® x y z =
ocanren {

let rec add x y = XK=7 Az=y V

match x with]

| 7 Sy fresh xs, zs in
X=935 xs A

| S xs — S (add xs y) =S g8 A

add® xs y zs}

add® (s z) (sz) & = [=5 s 7]

9/28

Functional vs. Relational Addition Implementation

let rec add® x y z =
ocanren {

let rec add x y = XK=7 Az=y V

match x with]

| 7 Sy fresh xs, zs in
X=935 xs A

| S xs — S (add xs y) =S g8 A

add® xs y zs}

add® (s z) (sz) & = [=5 s 7]

add’® o (s2) (ssz) = [a=5s 7]

9/28

Functional vs. Relational Addition Implementation

let rec add® x y z =
ocanren {

let rec add x y = X=71 A z=y V

match x with .

B Sy fresh xs, zs in
X=S xs A

| S xs — S (add xs y) S =5 25 A

add® xs y zs}

9/28

Relational Conversion

@ In many cases it is easier to obtain relational program from
functional one

@ We use typed relational conversion tool, called NOCANREN

@ In practice we mix hand-written and converted relational code

10/28

Relational Solver for JAVA Generics Type System

Solving a system of subtyping inequations for JAVA generic types
with free variables

@ Using relational programming techniques and verifier-to-solver
approach

@ Applying a number of problem-specific optimizations for boosting
the performance

11/28

JAVA Type Table

: Iterable(E)

Yoo
Collection(E)

A . . .
. . S .
Queue(E) Lis(E) ;.
£ _
 SortedSet(E)

Y BEEN .
BlockingQueue(E) : * Deque(E)

7| AbstractSet(E)

RandomAccess

A/ .
NavigableSet(E)

«r

: | HashSet(E) ArrayBlockingQueue(E) BIockingchuc(E).‘i

AbstractSequentialList(E) | Vector(E) || ArrayList(E)

| J »
GinkedHashSe&(ED GoncurremSkipLislSel(ED

»

v
G_inkedBlockingDeque(ED [LinkedLisl(E)j Stack(E)

TreeSet(E)

12/28

Direct Subtyping Relation

C <0c1U‘ ...oc,L(”‘>
C(Ty...Tx)
C(Ty...Ty)

NTi

a7

T

null

/

T[]
Object[]
Object[]
[l

Object

A A A A A A A KX

A A A A

S(Ty... T
C(Si...S)
S

=

S[]
Object
Cloneabe

Serializable

S is a direct supertype of C
Vi.§ D T;
C <|_T1J |_TKJ> <8

/'is an interface with no
direct superinterface

T<S

13/28

Functional Verifier of Subtyping Relation

cverify(x, y) =

If /is an interface then ~ if x isaninterface & y = Object
I < Object i then true
if T < Sthen elif x = t[] && y = s[] && verify(t, s)
i =< Sl then true

4 thentrue
Object[] < Cloneabe elif x = Object[] & y = Cloneable
. thentrue
Object[] < Serializable elif x = Object[] & y = Serializable
then true

else false

14/28

Relational Direct Subtyping Solver

@ Functional verifier was implemented in OCAML

@ Straightforward implementation according to JLS
o Verifier tests if two given ground types are in the subtyping relation

@ Relational verifier was generated using NOCANREN
o Verifier searches for all substitutions for free variables in incomplete
types to make them subtype of each other

@ We excluded some JLS components from the implementation to ensure
only instantiable classes to appear in answers

@ Capture conversion
@ contains relation

15/28

Unsoundness of Direct Subtyping

By JLS definition of direct subtyping

A=< o8
af < B

16/28

Unsoundness of Direct Subtyping

By JLS definition of direct subtyping

A=< o8
= A<<B

af < B

16/28

Unsoundness of Direct Subtyping

By JLS definition of direct subtyping

A=< o8
= A<<B
af < B

We found no explicitly requirement in JLS that a type variable ocﬁ
have consistent bounds

16/28

Reflexivity of Direct Subtyping

Type C(Ty, ..., Ty) is a direct subtype of itself by JLS definition of
direct subtyping

17/28

Reflexivity of Direct Subtyping

Type C(Ty, ..., Ty) is a direct subtype of itself by JLS definition of
direct subtyping

As a result, there are an infinite number of ways to prove that type T;
is a subtype of T»

17/28

Relational Subtyping Solver

@ Reflexive-transitive R* closure for given relation R can be
expressed in MINIKANREN directly by

R*(x,y) = x=yV3z.R(x,z)AR" (2, y)

@ Hand-written relation

18/28

Relational Subtyping Solver Optimizations

@ Simplifying a representation of class and interface identifiers
@ Peano numbers was replaced with integers manually
@ Dynamic transitive closure evaluation

@ Two closure implementations for finding subtypes and supertypes
@ Dynamic selection of the optimal implementation depending on the
arguments groundness

@ Dynamic class table specialization

@ Direct supertypes statically evaluated from the class table for each
class and interface

@ Dynamically generated relation depending on the class whose
supertypes need to be found

@ Removing duplicate answers

19/28

Dynamic Transitive Closure Evaluation

)(7
<_>l<
x,y) = x=yVv3iz.R(z,y)\N R*(x, 2)

*

ﬁ*(y) = XEy\/HZ.R(X,Z)/\ﬁ*(Z,y)
R

—~~

20/28

Dynamic Transitive Closure Evaluation

ﬁ*(y) = XEy\/HZ.R(X,Z)/\ﬁ*(Z,y)
R

)(7
<_>l<
x,y) = x=yVv3z.R(z,y)\N R*(x, z)

*

~

“ ﬁ* X, y), if x is ground
R(x,y)—{<_(y) g

R*(x, y), otherwise

20/28

Dynamic Class Table Specialization

sub_id = 04

super_id = Olp

let get_superclass_id sub_id super_id =

(sub_id =4 A
(sub_id =5 A
(sub_id =6 A
(sub_id =7 A
(sub_id =8 A
(sub_id =9 A

super_id = 1)

super_id = 4)
super_id = 4)

super_id = 5)
super_id = 5)
super_id = 5)

vV

V
V

21/28

Dynamic Class Table Specialization
sub_id = Oy super_id=4

let get_superclass_id sub_id super_id =

(sub_id =5 A super_id =14) V
(sub_id =6 A super_id =14) V

21/28

Dynamic Class Table Specialization
sub_id =8 super_id=5

let get_superclass_id sub_id super_id =

(sub_id =8 A super_id =5) V

21/28

Removing Duplicate Answers

@ Transitive closure builds all possible paths between a subtype
and a supertype

@ Due to multiple inheritance of interfaces, several paths are possible
@ One path corresponds one answer

22/28

Removing Duplicate Answers

@ Transitive closure builds all possible paths between a subtype
and a supertype
@ Due to multiple inheritance of interfaces, several paths are possible
@ One path corresponds one answer

@ Truncation of duplicate branches
@ Let’s memorize the already calculated answers
@ In unfinished search branches, we monitor the query variable
@ If query variable corresponds to one of the answers found, we fail this
branch early

22/28

Removing Duplicate Answers

@ If there is only one subtyping inequation in the system, we will
simply remove duplicates

@ Transitive closure finds the answer only in the last step
@ Until the answer is found, we cannot determine if it is a duplicate

23/28

Removing Duplicate Answers

@ If there is only one subtyping inequation in the system, we will
simply remove duplicates
@ Transitive closure finds the answer only in the last step
@ Until the answer is found, we cannot determine if it is a duplicate

@ If there is more than one inequation, some branches will fail
early
@ For the first inequation we are looking for all the answers
@ For the second and subsequent inequations, we verify the answers for
the first inequality

23/28

Evaluation

@ Real class table containing more than 40000 classes and
interfaces

@ 9 benchmark queries of various shapes
@ o << java.util.List<Object>

@ o << java.util.AbstractCollection<Object> A
O << java.util.RandomAccess A
o << java.util.List<Object>

@ javax.management.AttributeList << O

@ kotlinx.collections.PersistentVector<Object> << O A
javax.management .AttributelList << o A
com.google.common.collect.ImmutableSortedSet<Object> << O

@ kotlinx.collections.PersistentVector<Object> << Ol A
o << java.util.List<Object>

24/28

Evaluation

@ 4 versions of the solver

With no optimizations

@ With dynamic transitive closure evaluation only
@ With dynamic class table specialization only

@ With both optimizations

@ 2 quantitative measures
@ Overall number of answers
@ Number of unique answers

@ 4 time measures
@ Time of calculating the first answer
@ Maximal time for one answer
@ Average time taken over all answers
o Total evaluation time

25/28

Evaluation Results

|:|Time of the first answer |:| Maximum time for one answer

Time

A
100 sec]

10 sec]

1 sec}

0.1 sec]

10 ms]

1 msj

0.1 ms

|:|Average time of answers |:|Total evaluation time

|:| No answer after 300 seconds

0/190

46

61

11/22

4/

173

3/882

6

26/28

Conclusion

@ Developed JAVA generic type solver using relational conversion
and verifier-to-solver techniques

@ Optimized the solver to improve the performance

@ Evaluated the solver performance using real world JAVA class
table and realistic benchmarks

27/28

Future Work

@ Sorting the inequalities to improve performance

@ Integrating the solver into our symbolic execution engine

@ Supporting negative inequalities
e Type a is not subtype of
e Type a is not supertype of B

28/28

