
Assuming Just Enough Fairness

to make Session Types Complete

for Lock-freedom
ACM/IEEE LICS 2021 36th Annual Symposium on Logic in Computer

Science

Rob van Glabbeek1, Peter Höfner2, and Ross Horne3

1. Data61, CSIRO and UNSW, Sydney, Australia
2. Australian National University, Canberra, Australia

3. Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg

29 June – 02 July, 2021



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?a

Service B

?b

Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path:

Client A→Service A: ;Client A→Service A: ;Client A→Service A: . . .✗

6� L(P) � L(J)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?a

Service B

?b

Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path:

Client A→Service A: ;Client A→Service A: ;Client A→Service A: . . .✗

6� L(P) � L(J)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?a

Service B

?b

Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path:

Client A→Service A:

;Client A→Service A: ;Client A→Service A: . . .✗

6� L(P) � L(J)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?a

Service B

?b

Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path:

Client A→Service A: ;Client A→Service A:

;Client A→Service A: . . .✗

6� L(P) � L(J)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?a

Service B

?b

Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path:

Client A→Service A: ;Client A→Service A: ;Client A→Service A: . . .✗

6� L(P) � L(J)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?a

Service B

?b

Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path:

Client A→Service A: ;Client A→Service A: ;Client A→Service A: . . .✗

6� L(P)

� L(J)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?a

Service B

?b

Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path:

Client A→Service A: ;Client A→Service A: ;Client A→Service A: . . .✗

6� L(P) � L(J)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•
Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•
Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•

Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c

;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•
Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A:

;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•

Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•

Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J)

� L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•

Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?c?a

•
Supplier

τ

!c

τ

!d
•

Service B

?d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path where components are strongly fair:

τ;Supplier→Service A:c ;Client A→Service A: ;τ . . .✗

6� L(SC) � L(ST)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?c?a

•
Supplier

τ

!c

τ

!d
•

Service B

?d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path where components are strongly fair:

τ;Supplier→Service A:c ;Client A→Service A: ;τ . . .✗

6� L(SC) � L(ST)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?c?a

•
Supplier

τ

!c

τ

!d

•

Service B

?d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path where components are strongly fair:

τ

;Supplier→Service A:c ;Client A→Service A: ;τ . . .✗

6� L(SC) � L(ST)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?c?a

•

Supplier

τ

!c

τ

!d
•

Service B

?d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path where components are strongly fair:

τ;Supplier→Service A:c

;Client A→Service A: ;τ . . .✗

6� L(SC) � L(ST)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?c?a

•
Supplier

τ

!c

τ

!d
•

Service B

?d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path where components are strongly fair:

τ;Supplier→Service A:c ;Client A→Service A:

;τ . . .✗

6� L(SC) � L(ST)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?c?a

•
Supplier

τ

!c

τ

!d

•

Service B

?d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path where components are strongly fair:

τ;Supplier→Service A:c ;Client A→Service A: ;τ . . .✗

6� L(SC) � L(ST)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?c?a

•
Supplier

τ

!c

τ

!d

•

Service B

?d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path where components are strongly fair:

τ;Supplier→Service A:c ;Client A→Service A: ;τ . . .✗

6� L(SC)

� L(ST)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

?c?a

•
Supplier

τ

!c

τ

!d

•

Service B

?d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A path where components are strongly fair:

τ;Supplier→Service A:c ;Client A→Service A: ;τ . . .✗

6� L(SC) � L(ST)



Notions of Fairness for Finite-state Automata

J = JZ=JG

JT

P

SA

WA

JA

WT

SI

SWI

WI

JI

(3),(6)

SZ(2)

(2),(3)

WZ

(3),(6)

(1)

SC

(2),(3)

(2),(3)

(2),(3),
(4),(5)

WC

JC
(3)

SG

WG

(3),(6)

ST = Fu

Under some mild
assumptions:

(1) For each synchronisation
Z ⊆ I, and for each network
state N, there is at most one
transition t with instr(t) = Z
that is enabled in N.

(2) I is finite.

(3) There is a function cp : I → C,
where C is the set of
components or locations in
the network, such that
comp(t) = {cp() |  ∈ instr(t)}
for all transitions t.

(4) If an instruction  is enabled
in a state N, it is also
requested.

(5) If instruction  is requested in
network state N and  is a
transition from N to N′ such
that cp() /∈ comp(), then  is
still requested in N′ .

(6) If t^  with
source(t) = source(), then
∃ ∈ Tr with
source() = target() and
instr() = instr(t).



Restricting to Session Calculi
Internal choice between outputs:

τ
τ τ

τ

!λ1 !λ2 !λn !λn+1

. . .

T1 T2 Tn Tn+1

⊕

∈
p!λ; T

External choice between inputs:

?λ1
?λ2 ?λn

?λn+1

T1 T2 Tn Tn+1

. . .

∑

∈
p?λ; T

Plus guarded recursion.

CentA〚μX.SerceA!;X〛
‖ SerceA〚μX.Spper?c;CentA?;X〛
‖ Spper〚μX.(SerceA!c;X ⊕ SerceB!d;X)〛
‖ SerceB〚μX.Spper?d;CentB?b;X〛
‖ CentB〚μX.SerceB!b;X〛



Restricting to Session Calculi
Internal choice between outputs:

τ
τ τ

τ

!λ1 !λ2 !λn !λn+1

. . .

T1 T2 Tn Tn+1

⊕

∈
p!λ; T

External choice between inputs:

?λ1
?λ2 ?λn

?λn+1

T1 T2 Tn Tn+1

. . .

∑

∈
p?λ; T

Plus guarded recursion.

CentA〚μX.SerceA!;X〛
‖ SerceA〚μX.Spper?c;CentA?;X〛
‖ Spper〚μX.(SerceA!c;X ⊕ SerceB!d;X)〛
‖ SerceB〚μX.Spper?d;CentB?b;X〛
‖ CentB〚μX.SerceB!b;X〛



Restricting to Session Calculi
Internal choice between outputs:

τ
τ τ

τ

!λ1 !λ2 !λn !λn+1

. . .

T1 T2 Tn Tn+1

⊕

∈
p!λ; T

External choice between inputs:

?λ1
?λ2 ?λn

?λn+1

T1 T2 Tn Tn+1

. . .

∑

∈
p?λ; T

Plus guarded recursion.

CentA〚μX.SerceA!;X〛
‖ SerceA〚μX.Spper?c;CentA?;X〛
‖ Spper〚μX.(SerceA!c;X ⊕ SerceB!d;X)〛
‖ SerceB〚μX.Spper?d;CentB?b;X〛
‖ CentB〚μX.SerceB!b;X〛



Notions of Fairness for a Synchronous Session Calculus

J = JZ=JG

JT

P

SA

WA

JA

WT

SI

SWI

WI

JI

(3),(6)

SZ(2)

(2),(3)

WZ

(3),(6)

(1)

SC

(2),(3)

(2),(3)

(2),(3),
(4),(5)

WC

JC
(3)

SG

WG

(3),(6)

ST = Fu

J = JZ = JG = JI = JC
=WZ =WG =WI =WC

P =WT = JT

SA

WA = JA

SI = SZ

SC = SG = SWI

ST = Fu



Lock-freedom for a Synchronous Session Calculus

Lock-freedom (L(F)): Along any F-fair path, if a component
has not successfully terminated, then it must eventually act.

J

P

SA

WA

SI

SC

ST

L(P) = L(SA) = L(WA)

L(J)

⇑

⇑

⇑

⇑

L(SC)

L(SI) = L(ST)

deadlock-freedom

Contravariance: more satisfaction if you consider less traces.



Lock-freedom for a Synchronous Session Calculus

Lock-freedom (L(F)): Along any F-fair path, if a component
has not successfully terminated, then it must eventually act.

J

P

SA

WA

SI

SC

ST

L(P) = L(SA) = L(WA)

L(J)

⇑

⇑

⇑

⇑

L(SC)

L(SI) = L(ST)

deadlock-freedom

Contravariance: more satisfaction if you consider less traces.



Lock-freedom for a Synchronous Session Calculus

Lock-freedom (L(F)): Along any F-fair path, if a component
has not successfully terminated, then it must eventually act.

J

P

SA

WA

SI

SC

ST

L(P) = L(SA) = L(WA)

L(J)

⇑

⇑

⇑

⇑

L(SC)

L(SI) = L(ST) = Pdon

deadlock-freedom

Contravariance: more satisfaction if you consider less traces.



Global session types and guarded types
Client A Service A Service B Client B

rec X

a

b

X

Client A

!a

Service A

?a

Service B

?b

Client B

!b

Projection of Client B: !b ` μX.SerceB!b;X Guarded!

So L(P) is unsound with respect to typeability.



Global session types and guarded types

Client A Service A Service B Client B

rec X

a

b

X

Projection of Client B: !b ` μX.SerceB!b;X

Guarded!

So L(P) is unsound with respect to typeability.



Global session types and guarded types

Client A Service A Service B Client B

rec X

a

b

X

Projection of Client B: !b ` μX.SerceB!b;X Guarded!

So L(P) is unsound with respect to typeability.



Global session types and guarded types

Client A Service A Service B Client B

rec X

a

b

X

Projection of Client B: !b ` μX.SerceB!b;X Guarded!

So L(P) is unsound with respect to typeability.



Global session types and guarded types
Client A Service A Supplier Service B Client B

rec X

c

a

X

d

b

X

choice at Supplier

Client A

!a

Service A

?c?a

Supplier

τ

!c

τ

!d

Service B

?d ?b

Client B

!b

Projection of Client B: !b ` μX.(XuSerceB!b;X) Not Guarded!

So L(ST) is incomplete with respect to typeability.



Global session types and guarded types

Client A Service A Supplier Service B Client B

rec X

c

a

X

d

b

X

choice at Supplier

Projection of Client B: !b ` μX.(XuSerceB!b;X)

Not Guarded!

So L(ST) is incomplete with respect to typeability.



Global session types and guarded types

Client A Service A Supplier Service B Client B

rec X

c

a

X

d

b

X

choice at Supplier

Projection of Client B: !b ` μX.(XuSerceB!b;X) Not Guarded!

So L(ST) is incomplete with respect to typeability.



Global session types and guarded types

Client A Service A Supplier Service B Client B

rec X

c

a

X

d

b

X

choice at Supplier

Projection of Client B: !b ` μX.(XuSerceB!b;X) Not Guarded!

So L(ST) is incomplete with respect to typeability.



Soundness and Completeness for Race-free Networks

session calculus:

L(P)

L(J)

⇑

⇑

⇑

⇑

L(SC)

L(ST)

deadlock-freedom

race-free session calculus:

L(P)

⇑

⇑

⇑

L(J) = L(SC)

L(ST)

deadlock-freedom

Theorem (soundness)
N well-typed and race-free ⇒ N |= L(J).

Theorem (completeness)
N |= L(J) ⇒ N well-typed.



Soundness and Completeness for Race-free Networks

session calculus:

L(P)

L(J)

⇑

⇑

⇑

⇑

L(SC)

L(ST)

deadlock-freedom

race-free session calculus:

L(P)

⇑

⇑

⇑

L(J) = L(SC) = well-typed

L(ST)

deadlock-freedom

Theorem (soundness)
N well-typed and race-free ⇒ N |= L(J).

Theorem (completeness)
N |= L(J) ⇒ N well-typed.



Completeness does not depend on race-freedom

Theorem (completeness)
N |= L(J) ⇒ N well-typed.

Can synthesise a global session type whenever L(J) satisfied.

L(P)

L(J)

⇑

⇑ =⇒

⇑

⇑

L(SC)
well-typed

L(ST)

deadlock-freedom

Can we strengthen such that “N |= L(SC) ⇒ N well-typed” holds? ✗



Completeness does not depend on race-freedom

Theorem (completeness)
N |= L(J) ⇒ N well-typed.

Can synthesise a global session type whenever L(J) satisfied.

L(P)

L(J)

⇑

⇑ =⇒

⇑

⇑

L(SC)
well-typed

L(ST)

deadlock-freedom

Can we strengthen such that “N |= L(SC) ⇒ N well-typed” holds? ✗



Completeness does not depend on race-freedom

Theorem (completeness)
N |= L(J) ⇒ N well-typed.

Can synthesise a global session type whenever L(J) satisfied.

L(P)

L(J)

⇑

⇑ =⇒

⇑

⇑

L(SC)
well-typed

L(ST)

deadlock-freedom

Can we strengthen such that “N |= L(SC) ⇒ N well-typed” holds?

✗



Completeness does not depend on race-freedom

Theorem (completeness)
N |= L(J) ⇒ N well-typed.

Can synthesise a global session type whenever L(J) satisfied.

L(P)

L(J)

⇑

⇑ =⇒

⇑

⇑

L(SC)
well-typed

L(ST)

deadlock-freedom

Can we strengthen such that “N |= L(SC) ⇒ N well-typed” holds? ✗



L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)

Seller

τ

!a

τ

!b
•

Buyer
?a

?d?c

?b

•
Regulator

!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.



L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)

Seller

τ

!a

τ

!b

•

Buyer
?a

?d?c

?b

•
Regulator

!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.



L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)

Seller

τ

!a

τ

!b
•

Buyer
?a

?d?c

?b

•
Regulator

!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.



L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)

Seller

τ

!a

τ

!b

•

Buyer
?a

?d?c

?b

•
Regulator

!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.



L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)

Seller

τ

!a

τ

!b
•

Buyer
?a

?d?c

?b

•
Regulator

!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.



L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)

Seller

τ

!a

τ

!b

•

Buyer
?a

?d?c

?b

•
Regulator

!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.



L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)

Seller

τ

!a

τ

!b

•

Buyer
?a

?d?c

?b

•
Regulator

!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.



L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)

Seller

τ

!a

τ

!b

•

Buyer
?a

?d?c

?b

•
Regulator

!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.



Conclusion

J = JZ=JG

JT

P

SA

WA

JA

WT

SI

SWI

WI

JI

(3),(6)

SZ(2)

(2),(3)

WZ

(3),(6)

(1)

SC

(2),(3)

(2),(3)

(2),(3),
(4),(5)

WC

JC
(3)

SG

WG

(3),(6)

ST = Fu

We considered a parametrised notion
of lock-freedom and instantiated it for
all established notions of fairness.

And the notion satisfying the most
robust soundness and completeness
properties with respect to global
session types is:

L(J) Just Lock-Freedom
This is the first completeness result of it’s kind for session calculi.

Session calculi look simple but proofs are non-trival and full of surprises...



Conclusion

J = JZ=JG

JT

P

SA

WA

JA

WT

SI

SWI

WI

JI

(3),(6)

SZ(2)

(2),(3)

WZ

(3),(6)

(1)

SC

(2),(3)

(2),(3)

(2),(3),
(4),(5)

WC

JC
(3)

SG

WG

(3),(6)

ST = Fu

We considered a parametrised notion
of lock-freedom and instantiated it for
all established notions of fairness.

And the notion satisfying the most
robust soundness and completeness
properties with respect to global
session types is:

L(J) Just Lock-Freedom

This is the first completeness result of it’s kind for session calculi.

Session calculi look simple but proofs are non-trival and full of surprises...



Conclusion

J = JZ=JG

JT

P

SA

WA

JA

WT

SI

SWI

WI

JI

(3),(6)

SZ(2)

(2),(3)

WZ

(3),(6)

(1)

SC

(2),(3)

(2),(3)

(2),(3),
(4),(5)

WC

JC
(3)

SG

WG

(3),(6)

ST = Fu

We considered a parametrised notion
of lock-freedom and instantiated it for
all established notions of fairness.

And the notion satisfying the most
robust soundness and completeness
properties with respect to global
session types is:

L(J) Just Lock-Freedom
This is the first completeness result of it’s kind for session calculi.

Session calculi look simple but proofs are non-trival and full of surprises...



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•
Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•
Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•

Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c

;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•
Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A:

;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•

Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•

Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J)

� L(SC)



Fairness Assumptions and Liveness Properties

Client A

!a

Service A

!c?a

•

Supplier

?c ?d

Service B

!d ?b

•
Client B

!b

Liveness property:
Everyone wishing to trade eventually does so.

A just path:

Service A→Supplier:c ;Client A→Service A: ;Service A→Supplier:c . . .✗

6� L(J) � L(SC)


