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Notions of Fairness for Finite-state Automata
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(1)

SC

(2),(3)
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(4),(5)

WC

JC
(3)

SG

WG

(3),(6)

ST = Fu

Under some mild
assumptions:

(1) For each synchronisation
Z ⊆ I, and for each network
state N, there is at most one
transition t with instr(t) = Z
that is enabled in N.

(2) I is finite.

(3) There is a function cp : I → C,
where C is the set of
components or locations in
the network, such that
comp(t) = {cp() |  ∈ instr(t)}
for all transitions t.

(4) If an instruction  is enabled
in a state N, it is also
requested.

(5) If instruction  is requested in
network state N and  is a
transition from N to N′ such
that cp() /∈ comp(), then  is
still requested in N′ .

(6) If t^  with
source(t) = source(), then
∃ ∈ Tr with
source() = target() and
instr() = instr(t).



Restricting to Session Calculi
Internal choice between outputs:
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Plus guarded recursion.

CentA〚μX.SerceA!;X〛
‖ SerceA〚μX.Spper?c;CentA?;X〛
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Notions of Fairness for a Synchronous Session Calculus
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J = JZ = JG = JI = JC
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P =WT = JT
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Lock-freedom for a Synchronous Session Calculus

Lock-freedom (L(F)): Along any F-fair path, if a component
has not successfully terminated, then it must eventually act.
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deadlock-freedom

Contravariance: more satisfaction if you consider less traces.
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Global session types and guarded types
Client A Service A Service B Client B

rec X
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Projection of Client B: !b ` μX.SerceB!b;X Guarded!

So L(P) is unsound with respect to typeability.
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Soundness and Completeness for Race-free Networks

session calculus:
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Theorem (soundness)
N well-typed and race-free ⇒ N |= L(J).

Theorem (completeness)
N |= L(J) ⇒ N well-typed.



Soundness and Completeness for Race-free Networks

session calculus:

L(P)

L(J)

⇑

⇑

⇑

⇑

L(SC)

L(ST)

deadlock-freedom

race-free session calculus:

L(P)

⇑

⇑

⇑

L(J) = L(SC) = well-typed

L(ST)

deadlock-freedom

Theorem (soundness)
N well-typed and race-free ⇒ N |= L(J).

Theorem (completeness)
N |= L(J) ⇒ N well-typed.



Completeness does not depend on race-freedom

Theorem (completeness)
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Can we strengthen such that “N |= L(SC) ⇒ N well-typed” holds? ✗
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L(SC) Incomparable to Well-Typed

6� L(J) � L(SC)
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!c !d

•

The network is not well typed, in line with L(J).

Why: The internal choices of the Seller do not fully determine the flow of the
protocol.
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Conclusion
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ST = Fu

We considered a parametrised notion
of lock-freedom and instantiated it for
all established notions of fairness.

And the notion satisfying the most
robust soundness and completeness
properties with respect to global
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