
Development of optimization framework
for embedded software based on

automatic tuning of modern GCC via
optimisation phases reordering

Nikolay Efanov, Ph.D., Associate Professor

Otrashchenko Aleksey, undergradute student
Akimov Zakhar, undergradute student

Speakers:

Supervisor:

Engineering & Telecommunications Conference,
November 22 – 23, 2023

Content

• Introduction
• General solution overview
• Genetic algorithm approach
• Reinforement algorithm approach
• Result & approach comparison
• Conclusion

Subject area overview
• Optimization of embedded systems source codes is a relevant problem;

must be done with respect to several parameters (binary size,
perfomance, etc.)

• Current compiler auto-tuning frameworks are based only on LLVM
• Embedded systems usually use GCC as toolchain

Embedded systems code optimization based on
optimization phases reordering was not possible

Problem statement
1. Develop a method and framework for GCC toolchain,

which will allow tuning of compiler optimization passes via
reordering

2. Integrate developed framework into existing solutions for
compiler auto-tuning with target being size reduction
without runtime loss.

𝑠𝑖𝑧𝑒 𝑝𝑟𝑜𝑔 𝑝𝑎𝑠𝑠_𝑠𝑒𝑞 ,
!"#$%&'()"*+),--_-(/ ,12 34

→ 𝑚𝑖𝑛

𝑠𝑖𝑧𝑒 𝑓𝑢𝑛𝑐 𝑝𝑎𝑠𝑠_𝑠𝑒𝑞 ,
!"#$%&'(5#$6),--_-(/ ,12 34

→ 𝑚𝑖𝑛

Objective function for program-granular pass sequence search:

Objective function for function-granular pass sequence search:

GCC optimization pass tuning framework

Auto-tuning approach #1
Genetic Algorithm

Genetic algorithm overview
• Initial Population: Usually is generated randomly, might be seeded in

areas, where optimal solution might be found

• For each individual the fitness function is calculated, which defines
the quality of given individual.

• If termination criteria is satisfied, the best individual of the current
population is given as solution. Otherwise, the process continues

• The fitter individuals are chosen for reproduction

• For each new solution to be produced, a pair of parents is chosen.
Parents’ genes are combined through crossover process. Then, a
mutation may happen to the resulting gene sequence

• Each individual’s quality from resulting population is calculated via
objective function and this goes on until termination criteria is satisfied

GCC GA implementation details

• After both crossover and mutation the resulting pass sequence is checked for
correctness

• Crossover: The OX1 crossover method is used for each of lists in chromosome.

• Mutation: A removal of random existing pass / emplacement of a pass into place of
previously removed pass was chosen as a mutation method.

• Chromosome structure: The chromosome consists of 3 expertly chosen pass lists, that include IPA
passes, general intra-procedural optimization passes, and RTL optimization passes.

• Stopping criteria: The search stops after 50 generations
without change of objective function maximum

• Objective function: The objective function is
calculated as follows (everything relative to GCC
-O2):

Auto-tuning approach #2
Reinforcement Learning

Incorporation to Ray/Rllib

GСС IR embeddings
• GСС IR is characterised using

autophase characterisation, control
and value flow graphs

• Autophase characterisation consits
of information about IR, available
immediately during compilation

• The embedding from control flow
graph and value flow graph are
acquired as shown on the picture

Graph to embedding pipeline
Whole embedding:

Results

Benchmark RL size optimization, %
compared to -O2

Genetic algorithm
optimization, % compared

to -O2

susan 9.6 10.7

zstd 6.1 9.5

gzip 5.1 7.5

bzip2 6.5 8.2

stringsearch 3.4 4.7

patricia 7.6 5.8

bitcount 1.6 2.0

544nab 8.9 12.0

Results comparison

Conclusion
• Size reduction up to ~10% was achieved with loss in runtime within error margin
• Genetic algorithm shows better results, but takes much more time to auto-tune

the pass order and has no way to transfer knowledge between programs

Futher directions
• Implement genetic algorithm with function granularity
• Collect data from function-granular genetic algorithms runs for further use in

supervised learning
• Apply new algorithms for reinforcement learning

Q&A and discussion section

