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Subject area overview
• Optimization of embedded systems source codes is a relevant problem; 

must be done with respect to several parameters (binary size, 
perfomance, etc.)

• Current compiler auto-tuning frameworks are based only on LLVM
• Embedded systems usually use GCC as toolchain

Embedded systems code optimization based on 
optimization phases reordering was not possible



Problem statement
1. Develop a method and framework for GCC toolchain, 

which will allow tuning of compiler optimization passes via 
reordering

2. Integrate developed framework into existing solutions for 
compiler auto-tuning with target being size reduction 
without runtime loss. 
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Objective function for program-granular pass sequence search:

Objective function for function-granular pass sequence search:



GCC optimization pass tuning framework



Auto-tuning approach #1
Genetic Algorithm



Genetic algorithm overview
• Initial Population: Usually is generated randomly, might be seeded in 

areas, where optimal solution might be found

• For each individual the fitness function is calculated, which defines 
the quality of given individual.

• If termination criteria is satisfied, the best individual of the current 
population is given as solution. Otherwise, the process continues

• The fitter individuals are chosen for reproduction

• For each new solution to be produced, a pair of parents is chosen. 
Parents’ genes are combined through crossover process. Then, a 
mutation may happen to the resulting gene sequence

• Each individual’s quality from resulting population is calculated via 
objective function and this goes on until termination criteria is satisfied



GCC GA implementation details

• After both crossover and mutation the resulting pass sequence is checked for 
correctness

• Crossover: The OX1 crossover method is used for each of lists in chromosome.

• Mutation: A removal of random existing pass / emplacement of a pass into place of 
previously removed pass was chosen as a mutation method. 

• Chromosome structure: The chromosome consists of 3 expertly chosen pass lists, that include IPA 
passes, general intra-procedural optimization passes, and RTL optimization passes.

• Stopping criteria: The search stops after 50 generations 
without change of objective function maximum

• Objective function: The objective function is 
calculated as follows (everything relative to GCC 
-O2):



Auto-tuning approach #2
Reinforcement Learning



Incorporation to Ray/Rllib



GСС IR embeddings
• GСС IR is characterised using 

autophase characterisation, control 
and value flow graphs

• Autophase characterisation consits 
of information about IR, available 
immediately during compilation

• The embedding from control flow 
graph and value flow graph are 
acquired as shown on the picture

Graph to embedding pipeline
Whole embedding:



Results

Benchmark RL size optimization, % 
compared to -O2

Genetic algorithm 
optimization, % compared 

to -O2

susan 9.6 10.7

zstd 6.1 9.5

gzip 5.1 7.5

bzip2 6.5 8.2

stringsearch 3.4 4.7

patricia 7.6 5.8

bitcount 1.6 2.0

544nab 8.9 12.0



Results comparison



Conclusion
• Size reduction up to ~10% was achieved with loss in runtime within error margin
• Genetic algorithm shows better results, but takes much more time to auto-tune 

the pass order and has no way to transfer knowledge between programs

Futher directions
• Implement genetic algorithm with function granularity
• Collect data from function-granular genetic algorithms runs for further use in 

supervised learning
• Apply new algorithms for reinforcement learning



Q&A and discussion section


