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Implementation vs. Specification

Program synthesis from polymorphic refinement types
[Polikarpova, Kuraj, Solar-Lezama, PLDI-2016]

specification code

insert:ix;qx — t:BST @@ — insert = Ax. At.match t with

{BST (x\ keys v = keys t + [x]} \ Empty — Node x Empty Empty
| Nodey lr— if x<yAy<x

then t
termination measure size :: BST o — Int else if y <x
measure keys :: BST o — Set « then Node y 1 (insert x r)
data BST o where else Node y (insert x 1) r

Empty:: {BST « | keys v = [1}
Node::x:ax — L:BST{a | ¥ < x} — mBST{a| x < v}
— {BST a| keys v =keys 1 + keys r + [x]}
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The Program Synthesis Challenge

@ Specifications tend to contain errors.

@ Sometimes imperative description is more robust then
declarative.

@ Sometimes specification is more verbose and harder to write than
implementation.
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Program Transformations

Idea: make a program from another simpler one

Advantage: use conventional SE techniques to debug & test the
simpler one

Program Inversion:

@ sorting — permutations
@ type checking — type inference

@ verifier — solver

From Standard to Non-Standard Semantics by Semantics
Modifiers [Abramov, Gliick, 2001]
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Program Synthesis by Inversion

pxi—y

sort [5; 3; 2; 4; 1] = [1; 2; 3; 4; 5]

ply e {x|pxy}

sort™' [1; 2; 3; 4; 5] ={ 1| sort 1 =[1; 2; 3; 4; 5] }

invert p=p~"
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Inversion by Relational Programming

Programs as functions vs. programs as relations

functional relational

DXy p° x y — {success, failure }
adding free variables

p° x y — {substitutions for free variables in x and y }

sort®a [1;2;3;4;5]

8/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

ProLoG = HC + DFS + EXTRA-LOGIC FEATURES

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

4

ProLoG = HC + DFS + EXTRA-LOGIC FEATURES

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

ProLoG = HC + DFS + EXTRA-LOGIC FEATURES

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

&2 9

ProLoG = HC + DFS + EXTRA-LOGIC FEATURES

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

&= D W

ProLoG = HC + DFS + EXTRA-LOGIC FEATURES

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

&= D W

PROLOG HC + DFS + EXTRA-LOGIC FEATURES

MINIKANREN HC + COMPLETE INTERLEAVING SEARCH

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

&=

HC + DFS + EXTRA-LOGIC FEATURES

q

HC + COMPLETE INTERLEAVING SEARCH

PRoLOG

MINIKANREN

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

&= D W

PROLOG HC + DFS + EXTRA-LOGIC FEATURES

N

MINIKANREN HC + COMPLETE INTERLEAVING SEARCH

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

y /
. * ' °(D
: . ;’
r

HC + DFS + EXTRA-LOGIC FEATURES

<i ‘4»

HC + COMPLETE |NTERLEAVING SEARCH

PRoLOG

MINIKANREN

9/33



MINIKANREN

A minimalistic relational language in the form of a DSL

The Reasoned Schemer [Byrd, Friedman, Kiselyov, 2005]

y /
. * ' °(D
: . ;’
r

HC + DFS + EXTRA-LOGIC FEATURES

é A .. %6\”

HC + COMPLETE |NTERLEAVING SEARCH

PRoLOG

MINIKANREN

9/33



MINIKANREN: Syntax

Terms:

X
F
TIx

{X1,X2,...}
AN .
XU{fn(ﬁ,...,tn)‘fnt]:, tiE{Ix}

10/33



MINIKANREN: Syntax

Terms:

X = {X1,X2,...}
F o= {ff fe .}
Ix = XU{fn(t1,...,tn)‘fHGT,f,'E{Ix}

Goals (all terms are in ‘ZIx):

G = h=bh
91 N\G2

g1V
dx.g

Rty ...t

10/33



MINIKANREN: Syntax

Terms:

X
F
TIx

{X1,X2,...}
AN .
XU{fn(t1,...,tn) ‘ fmeF, t,-G‘IX}

Goals (all terms are in ‘ZIx):

Definitions:

G = h=bh
g1 NGz
g1V 92
dx.g
Rty ...t

H:A,XL..Xk.g
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MINIKANREN — PROLOG
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MINIKANREN — PROLOG
example = Axy.y=AA(3z.x=B(z)Vifoo(y, z))

@ remove existential quantifiers:

example = Axy.y =AN(x=B(z)Vfoo(y,z))

@ transform to DNF (by folding suitable subgoals into auxilliary
definitions);

example’
example

Axyz.x=B(z)Vfoo(y, z)
Axy.y = AAexample (x,y, z)

@ introduce a separate Horn clause for each of the disjuncts, pulling
the top-level unifications to the head’s arguments:
example’  (b(2), -, Z).

example (., Y,2) E foo(Y,2Z).
example (X, a) F  examplé (X, a, Z).
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PROLOG — MINIKANREN

append ([, Y, Y).
append ([H|T],Y,[H|TY]) + append(T,Y,TY).

@ rename the arguments in Horn clauses heads coherently adding
explicit unifications where needed;
append(X,Y,Z) + X=[AY=Z
append(X,Y,Z) + X=[H|TIANZ=[H|TY]Aappend(T,Y,TY).

@ introduce explicit existential quantifiers:

append (X,Y,Z) + X=[AY=2Z.
append (X,Y,Z) + 3IHTTY.X=[H|TIAZ=[H|TY]Aappend(T, Y, TY).

@ join the clauses with the same heads into the one relational
definition using disjunction:

append = Ax,y,z.(x=[|Ay=2z)VIhtty.x=h:tAappendtyty)

12/33
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MINIKANREN: Semantics

@ Denotational: least Herbrand model.
@ Operational: occurs check + interleaving search:
e sound & complete w.r.t. LHM;

e refutationally incomplete.
Typed Relational Conversion [Lozov, Vyatkin, Boulytchev, TFP-2017]

Certified Semantics for Relational Programming [Rozplokhas,
Boulytchev, APLAS-2020]

Certified Semantics with Disequality [Rozplikhas, Boulytcheyv,
miniKanren-2021]
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Interleaving Search: Idea

Idea: build a semantics of a goal as a state-transforming function:

[e]: G — St — St*

@ St — states (contain everything needed to make a step);
@ St* — a lazy stream of states.

Laziness is important for completeness:

foo=Ax.fooxVx=5

14/33



Interleaving Search: Blueprint

e -
[[t1 = tz]] G { , 14 and t, do not have a unifier

MGU (o, ti, ) , otherwise

[g1Ag2]o = concat (map [gz] ([g1]0))

lg1 Vge]o [gi]o®[g]o

[Bx.g]c = [g[x+ a]]d, (o, o) =freshc

[Rti...t] o lg[xi < t]]o,R=Ax1...X.g
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Interleaving Search: Details

A

>

St

Sty

MGU ((o, P), ti, &)
fresh (G, P)

fog

{a4, 02, ...} (all terms now in Ty 7)
A—Ig

T P (2)

()

(mgu(t;0, Lo), P)

(@, (o, P\{a})),acP

9 ., f=e
oc(gef) , f=of

Backtracking, Interleaving, and Terminating Monad Transformers
[Kiselyov, Chung-chieh Shan, Friedman, Sabry, ICFP-2005]
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OCANREN: a Strongly Typed MINIKANREN for OCAML

Typed Embedding of a Relational Language in OCaml [Kosarev,
Boulytchev, ML-2016]
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let rec append® x y xy = conde [
((x=nil () &&& (v =xy));

call_fresh (funh —
call_fresh (funt —

call_fresh (fun ty —

(x=h%t) &&&
(h% ty = xy) &8&&

(append’® t y ty’))))

let rec append® x y xy = ocanren {
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OCANREN: a Strongly Typed MINIKANREN for OCAML

Typed Embedding of a Relational Language in OCaml [Kosarev,
Boulytchev, ML-2016]

let rec append® x y xy = conde [
((x=nil () &&& (v =xy));

call_fresh (funh —
call_fresh (funt —

call_fresh (fun ty —

(x=h%t) &&&
(h% ty = xy) &8&&

(append’® t y ty’))))

@ Disequality constraints;

@ Tabling;
@ Wildcard variables;
° ..

let rec append® x y xy = ocanren {
x==[] &y = zy |
fresh h, t, ty in
x==h 1 t &
z==h I ty &
append® t y ty

}

17/33
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OCANREN: Typing

Types in the functional world:
type o list = [] | o :: o list
The relational world case:

fresh h, t, ty in
x==h . t &
z=="h Ity

Types in the relational world:

@ a logic list can be either a free variable

@ ...or|]

@ ..orh  t,where
e his alogic element of list
e tis a logic list

Relational types cannot be acquired by some parameterization of
functional ones.

18/33
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type (o, B) alist =[] | o 2 B
type a0 list = (o, o list) alist
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OCANREN: Abstraction, Lifting, Injection

Type abstraction:

type (a, B) alist =[] | & :: B

type a0 list = (o, o list) alist
Logic type:

type 0 logic = Var of var | Val of o
Logic lists:

type a0 1list = ((ot, o0 11ist) alist) logic
Transformation o0 1ist — o/ 11ist:

@ on type level: lifting

@ on value level: injection

19/33



OCANREN: Reification, Example

open OCanren
open GT

ocanren type nat = 0 | S of nat

let rec addo x y z = ocanren {
x=08&y==1z |
fresh x’, z’ in
x =95 x &
z==S51z &
addo x" y z’

}

let _ =
Stream.iter (fun g — Printf.printf "ofks\n” @@ GT.show(nat) q) @@
run g
(fun g — ocanren {addo (S 0) (S (S 0)) q})
(fun g — o#freify nat_prj_exn)

Generic Programming with Combinators and Objects [Kosarev,
Boulytchev, ML-2021]
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21/33



Typed Relational Conversion: Motivation

Relational programming is hard and error-prone

let rec append x y =
match x of
[1 -y
| h ::t — h :: (append t y)

21/33



Typed Relational Conversion: Motivation

Relational programming is hard and error-prone
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z==h I ty &

append® t y ty

}

21/33



Typed Relational Conversion: Motivation

Relational programming is hard and error-prone

let rec append x y = let rec append® x y xy = ocanren {
match x of x=[] &y =xy |
(1 =y fresh h, t, ty in
| h ::t — h :: (append t y) x==h 11 t&
z==h I ty &
append® t y ty
}
Unnesting:

let rec append x y =
match x of
[l -y
| h ot —
let ty = append t y in
h oty

21/33



Unnesting: Higher-Order Case

let bar x =
let f x = x in
let g a =fin
gAx
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Unnesting: Higher-Order Case

let bar x =
let f x = x in
let g a =fin
gAx

let bar® x r = ocanren {

let f x r=x==rin
letgar=f==rin
gAXTI

}

22/33



Typed Relational Conversion: Idea
On the type level:

® — the type of goals

[a] — a—®
[[t1 — tz]] — [[t1]] — [[tg]]
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Typed Relational Conversion: Idea
On the type level:

® — the type of goals
[a] — a—&
[[t1 — tz]] — [[t1]] — [[tg]]
On the term level:

@ pure A-calculus is left intact!
@ pattern-matching goes to disjunction (too long to present);
@ constructor:

fung —
freshgy,..., gk in

[Cler,..., e)] — [ed] i

ﬁ;kﬂ Qe /
qETC(qh"'vqk)

23/33



Typed Relational Conversion: NOCANREN

let rec addo x y =
match x with
0 — y
| s x” — S (addo x' y)
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Typed Relational Conversion:

let rec addo x y =
match x with
0 — y
| s x” — S (addo x' y)

NOCANREN

let rec addo x y g5 = ocanren {
fresh gl in
x gl &
(gl =0&y g5 |
fresh x’, g2 in
gl == S x’ &
g5 =5 g2 &
addo ((==) x') v 92
)
}
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Typed Relational Conversion:

let rec addo x y =
match x with
0 — y
| s x’ — S (addo x' y)

@ + administrative reductions;

NOCANREN

let rec addo x y g5 = ocanren {
fresh gl in
x gl &
(ql =0&y g5 |
fresh x’, g2 in

ql == S x’ &
g5 =5 q2 &
addo ((==) x’) v a2

)
}

@ + “best practices” for relational programming.

Typed Relational Conversion [Lozov, Vyatkin, Boulytchev, 2017]
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Interpreters and Relational Interpreters

Conventional interpreter:

evalpx—y & px—y
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Interpreters and Relational Interpreters

Conventional interpreter:
evalpx—y & px—y
Relational interpreter:
eval® p x y — {06;} such that Vi p8; x8; — y®;

Benefits: with a relational interpreter for a certain language all
programs in this language can be executed relationally

A Unified Approach to Solving Seven Programming Problems
(Functional Pearl) [Byrd, Ballantyne, Rosenblatt, Might, ICFP-2017]
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Search Problems, Verifiers, Solvers

Search problem: given a combinatorial object €2 find some object s
satisfying property P.
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Search Problems, Verifiers, Solvers

Search problem: given a combinatorial object €2 find some object s
satisfying property P.

Examples: Hamiltonian path, SAT, etc.

Verifier:

verify Q s — true , sisasolution
Y3257 false , otherwise

Solver:
verify® 0 © true

Relational Interpreters for Search Problems [Verbitskaya, Berezun,
Lozov, Boulytchev, MK-2019]
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Water Pouring Puzzle: Description

Water pouring puzzle

From Wikipedia, the free encyclopedia

This article needs additional citations for verification. Please help improve this article by
@ adding citations to refiable sources. Unsourced material may be challenged and removed.
Find sources: "Water pouring puzzle” - news - newspapers - books - scholar - JSTOR (July 2017) (Learn

‘how and when to remove this template message)

Water pouring puzzles (also called water jug problems, decanting problems, |12/

measuring puzzles, or Die Hard with a Vengeance puzzles) are a class of puzzle
involving a finite collection of water jugs of known integer capacities (in terms of a liquid
measure such as liters or gallons). Initially each jug contains a known integer volume of
ligquid, not necessarily equal to its capacity.

Puzzles of this type ask how many steps of pouring water from one jug to another (until
either one jug becomes empty or the other becomes full) are needed to reach a goal
state, specified in terms of the volume of liquid that must be present in some jug or

Starting state of the standard puzzle &

jugs 3
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Water Pouring Puzzle: Functional Verifier
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Water Pouring Puzzle: Functional Verifier

M={A—B,B—>ATATB |ALB}
C=NxNxNxN

-‘M*
cC—C
type move = AB | BA | FillA | FillB | EmptyA | EmptyB

let step (capA, capB, a, b) = function
FillA — (capA, capB, capA, b)
FillB — (capA, capB, a, capB)
EmptyA — (capA, capB, 0, b)

EmptyB — (capA, capB, a, 0)

AB — let diff = capB— b in
(capA, capB, a— diff, b + (min diff a))
| BA — let diff = capA— a in

(capA, capB, a + (min diff b), b — diff)

let eval = fold step
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Water Pouring Puzzle: Relational Solver

run, { fresha, b in
eval®(, 3, 0, 0) u (,_,a, b) &
(a ==1]b==1)
} +— [u+— (FillB, BA, FillB, BA)], ...
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Water Pouring Puzzle: Relational Solver

run, { fresha, b in
eval®(, 3, 0, 0) u (,_,a, b) &
(a ==1|b==1)
} +— [u+— (FillB, BA, FillB, BA)], ...

@ Other puzzles: Einstein problem, Jeep problem, Bridge & Torch,
Hanoi towers, etc.

@ Unification (verifier — unifier).
@ Type checker — type inferencer (STLC).
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Application: Pattern-Matching Synthesis

Relational Synthesis for Pattern Matching [Kosarev, Boulytchev,
APLAS-2020]
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Application: Pattern-Matching Synthesis

Relational Synthesis for Pattern Matching [Kosarev, Boulytchev,

APLAS-2020]

Constructors, values, and patterns:

C
vV
P

{ch,....ckn
CV*
_|cP
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Application: Pattern-Matching Synthesis

Relational Synthesis for Pattern Matching [Kosarev, Boulytchev,
APLAS-2020]

Constructors, values, and patterns:

c = {ch,.. . ck}

vV = CV*

P = _|CP*
Declarative semantics of pattern-matching:

(Vipt, k) — i, 1 < i < k41
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Application: Pattern-Matching Synthesis

Relational Synthesis for Pattern Matching [Kosarev, Boulytcheyv,
APLAS-2020]

“Switch” language:

M = °
| MIN]
S = returnN

| switch M with [C — S| otherwise §

31/33



Application: Pattern-Matching Synthesis

Relational Synthesis for Pattern Matching [Kosarev, Boulytcheyv,
APLAS-2020]

“Switch” language:

M = °
| MIN]
S = returnN

| switch M with [C — S| otherwise §
The semantics of switch language:

V|—TC:>5/
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Application: Pattern-Matching Synthesis

Relational Synthesis for Pattern Matching [Kosarev, Boulytcheyv,
APLAS-2020]

“Switch” language:

M = °
| MIN]
S = returnN

| switch M with [C — S| otherwise §
The semantics of switch language:

vET =i

Pattern-matching synthesis problem: for a given ordered sequence of
patterns py, ..., px find a switch program &, such that

VeV, V1<i<n+1:{(v;py,....,pp) —i<=vEan=5i
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Application: Declarative Ul Synthesis

On a Declarative Guideline-Directed Ul Layout Synthesis [Kosarev,
Lozov, Fokin, Boulytchev, miniKanren-2022]
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@ Structure: a set of Ul controls and relations between them.
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Application: Declarative Ul Synthesis

On a Declarative Guideline-Directed Ul Layout Synthesis [Kosarev,
Lozov, Fokin, Boulytchev, miniKanren-2022]

@ Structure: a set of Ul controls and relations between them.

@ Layout: a set of primitives describing the placements of Ul
controls.

@ Guideline: a set of rules mapping structure elements to layout
primitives.

@ Layout synthesis problem: for a given structure find all maximal
sets of non-contradictory layout primitive instances prescribed by
a guideline.
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Thank you!

Links:
@ http://minikanren.org/ — the main MINIKANREN site;

@ https://github.com/PLTools/0OCanren — OCANREN
implementation;

@ https://github.com/PLTools/noCanren — NOCANREN
implementation.

Future research:
@ Performance improvements.
@ Heuristic search.
@ Extensions.

@ More applications.

dboulytchev@gmail.com

33/33


http://minikanren.org/
https://github.com/PLTools/OCanren
https://github.com/PLTools/noCanren

