
Rzk proof assistant and simplicial HoTT formalisation

Nikolai Kudasov, j.w.w. Emily Riehl and Jonathan Weinberger
May 26, 2023

Innopolis University

Outline

1. Synthetic theories and proof assistants

2. Synthetic ∞-categories and Rzk language

3. Literate, explicit, visual!

4. Formalising simplicial HoTT

5. What’s next?

2/28

Synthetic theories and proof
assistants

Applied Category Theory

(Higher) category theory (and homotopy theory) has many applications. For example:

• In chemistry: “A compositional framework for reaction networks” (Baez and
Pollard 2017)

• In physics: “Categorical Quantum Mechanics” (Abramsky and Coecke 2009)
• In software engineering and systems design: Seven Sketches in Compositionality:

An Invitation to Applied Category Theory (Fong and Spivak 2018)
• In natural language processing: “Mathematical Foundations for a Compositional

Distributional Model of Meaning” (Coecke, Sadrzadeh, and Clark 2010)

See many more at https://www.appliedcategorytheory.org.

3/28

https://www.appliedcategorytheory.org

Application: Categorical Databases

Basic idea is that

• database schemas are categories (Fong and Spivak 2018, Chapter 3)
• (good) migrations are (adjoint) functors (Σ ⊣ ∆ ⊣ Π)

See https://www.categoricaldata.net/ for more details.

4/28

https://www.categoricaldata.net/

Category Theory for Language Implementors

Algebraic concepts (including category theory) influence the tools and libraries used by
language implementors:

1. free monads and similar constructions are commonly used in Haskell when
implementing DSLs (Swierstra 2008);

2. monads are commonly used to abstract over imperative or SQL-like interfaces;
3. GHC.Generics are used to break down the structure of a user-defined data type to

allow safe metaprogramming features.

With a richer language, we can achieve more (e.g. see examples in Licata and Harper
2011, Section 4).

5/28

Rzk in context

1. Reasoning directly in (higher) category theory (or homotopy theory) is hard,
because one has to check coherences on (infinitely) many levels

2. Synthetic theories allow to interalize some of the arguments in such a way that
(some) proofs become easier

3. Proof assistants check or even derive proofs in synthetic theories

Applications1

(Physics, Biology, Computer Science, etc.)
Homotopy Theory (Higher) Category Theory

Homotopy Type Theory Type Theory for Synthetic ∞-categories
UniMath, cubical Agda, redtt, etc. Rzk

1see Applied Category Theory at https://www.appliedcategorytheory.org

6/28

https://www.appliedcategorytheory.org

Rzk in context

1. Reasoning directly in (higher) category theory (or homotopy theory) is hard,
because one has to check coherences on (infinitely) many levels

2. Synthetic theories allow to interalize some of the arguments in such a way that
(some) proofs become easier

3. Proof assistants check or even derive proofs in synthetic theories

Applications1

(Physics, Biology, Computer Science, etc.)
Homotopy Theory (Higher) Category Theory

Homotopy Type Theory Type Theory for Synthetic ∞-categories

UniMath, cubical Agda, redtt, etc. Rzk

1see Applied Category Theory at https://www.appliedcategorytheory.org

6/28

https://www.appliedcategorytheory.org

Rzk in context

1. Reasoning directly in (higher) category theory (or homotopy theory) is hard,
because one has to check coherences on (infinitely) many levels

2. Synthetic theories allow to interalize some of the arguments in such a way that
(some) proofs become easier

3. Proof assistants check or even derive proofs in synthetic theories

Applications1

(Physics, Biology, Computer Science, etc.)
Homotopy Theory (Higher) Category Theory

Homotopy Type Theory Type Theory for Synthetic ∞-categories
UniMath, cubical Agda, redtt, etc. Rzk

1see Applied Category Theory at https://www.appliedcategorytheory.org

6/28

https://www.appliedcategorytheory.org

Synthetic ∞-categories and Rzk
language

Overview

A type theory for synthetic ∞-categories (Riehl and Shulman 2017) is an extension
over an (intentional) Martin-Löf Type Theory with two important features:

1. extension types, which rely heavily on judgemental equality;
2. tope logic (spatial constraints), which requires an (intuitionistic) constraint solver.

Rzk is an experimental proof assistant (and a language) based on this type theory.
The language has simple syntax, but offers a few conveniences (some inspired by Agda,
Coq, or Lean) .

#lang rzk-1 -- this presentation is a literate rzk file

7/28

Type theory with shapes

A 3-layer type theory:

1. cubes provide spaces where points come from;
2. topes provide restrictions of those spaces;
3. types and terms are indexed by points in cubes, restricted by topes.

(t1, t2, t3) : 23
(t3 ≡ 0 ∧ t2 ≤ t1)∨
(t3 ≤ t2 ∧ t1 ≡ 1)∨
(t3 ≤ t2 ∧ t2 ≡ t1)

a, b, c, d : A
f, g, h, k, l,m

g ◦ f = h
m ◦ g = l
m ◦ h = k 8/28

Cubes and topes

In this talk, we will only use directed interval space 2 (2), directed square 2 * 2
(22), and directed cube 2 * 2 * 2 (23).

A tope is essentially an (intuitionistic) logical formula that restricts which points in a
given space we consider:

1. TOP selects all points in a given space (no restrictions, think true);
2. BOT selects nothing (think false);
3. (psi /\ zeta) selects all points that satisfy both psi and zeta;
4. (psi \/ zeta) selects all points that satisfy either psi or zeta;
5. (t === s) selects all points such that t = s;
6. (t <= s) selects all points such that t ≤ s;

9/28

Basic shapes: simplices

Basic shapes over (products of) the directed interval cube:

1 -- 1-simplex
2 #define Δ¹ : 2 -> TOPE
3 := \t -> TOP
4

5 -- 2-simplex
6 #define Δ² : (2 * 2) -> TOPE
7 := \(t, s) -> s <= t
8

9 -- 3-simplex
10 #define Δ³ : (2 * 2 * 2) -> TOPE
11 := \((t1, t2), t3) -> t3 <= t2 /\ t2 <= t1

0 1

• •

•

•
•

•

•
10/28

Basic shapes: boundaries

1 -- ∂ boundary of a 1-simplex
2 #def ∂Δ¹ : Δ¹ -> TOPE
3 := \t -> (t === 0_2 \/ t === 1_2)
4

5 -- boundary of a 2-simplex
6 #def ∂Δ² : Δ² -> TOPE
7 := \(t, s) ->
8 s === 0_2
9 \/ t === 1_2

10 \/ s === t

0 1

• •

•

11/28

Type layer: dependent functions

Dependent function types allow result type to depend on the value of a previously
introduced argument. Here are some equivalent notations for an identity function:

1 #define identity : (A : U) -> (x : A) -> A
2 := \A x -> x
3

4 -- curry and omit x in the type
5 #define identity2 : (A : U) -> (A -> A)
6 := \A x -> x
7

8 -- introduce A for type and term at the same time
9 #define identity3 (A : U)

10 : A -> A
11 := \x -> x 12/28

Type layer: dependent functions

A dependently-typed version of flipping arguments of a function:
1 -- Flipping the arguments of a function.
2 #def flip
3 (A B : U) -- For any types A and B
4 (C : A -> B -> U) -- and a type family C
5 (f : (x : A) -> (y : B) -> C x y) -- given a function f : A -> B -> C
6 : (y : B) -> (x : A) -> C x y -- we construct a function of type B -> A -> C
7 := \y x -> f x y -- by swapping the arguments
8

9 -- Flipping a function twice is the same as not doing anything
10 #def flip-flip-is-id
11 (A B : U) -- For any types A and B
12 (C : A -> B -> U) -- and a type family C
13 (f : (x : A) -> (y : B) -> C x y) -- given a function f : A -> B -> C
14 : f = flip B A (\y x -> C x y)
15 (flip A B C f) -- flipping f twice is the same as f
16 := refl -- proof by reflexivity

13/28

Type layer: identity/path types

1 #variable X : U
2 #variable Y : X -> U
3

4 -- transport in a type family along a path in the base
5 #def transport
6 (x y : X)
7 (p : x = y)
8 (u : Y x)
9 : Y y

10 := idJ(X, x, \y' p' -> Y y', u, y, p)

14/28

Simplicial types: hom

1 -- [RS17, Definition 5.1]
2 -- The type of arrows in A from x to y.
3 #def hom
4 (A : U) -- A type.
5 (x y : A) -- Two points in A.
6 : U
7 := (t : Δ¹) -> A [
8 t === 0_2 |-> x,
9 t === 1_2 |-> y

10]

x y

15/28

Simplicial types: hom2

1 -- [RS17, Definition 5.2]
2 -- the type of commutative triangles in A
3 #def hom2
4 (A : U)
5 (x y z : A)
6 (f : hom A x y)
7 (g : hom A y z)
8 (h : hom A x z)
9 : U

10 := { (t1, t2) : Δ² } -> A [
11 t2 === 0_2 |-> f t1,
12 t1 === 1_2 |-> g t2,
13 t2 === t1 |-> h t2
14]

x y

z

f

gh

16/28

Connection squares

1 #def unfolding-square
2 (A : U)
3 (triangle : Δ² -> A)
4 : Δ¹×Δ¹ -> A
5 := \(t, s) ->
6 recOR(t <= s |-> triangle (s , t),
7 s <= t |-> triangle (t , s))

•

•

•

•

17/28

Theorem 4.4

1 -- [RS17, Theorem 4.4]
2 -- original form
3 #def cofibration-composition
4 (I : CUBE)
5 (chi : I -> TOPE)
6 (psi : chi -> TOPE)
7 (phi : psi -> TOPE)
8 (X : chi -> U)
9 (a : (t : phi) -> X t)

10 : Eq <{t : I | chi t} -> X t [phi t |-> a t]>
11 (∑ (f : <{t : I | psi t} -> X t [phi t |-> a t]>),
12 <{t : I | chi t} -> X t [psi t |-> f t]>)
13 := (\h -> (\t -> h t,
14 \t -> h t),
15 ((\fg t -> (second fg) t, \h -> refl),
16 ((\fg t -> (second fg) t, \h -> refl))))

(∆2 → A) ≃
∑

x,y,z:A

∑
f:homA(x,y)

∑
g:homA(y,z)

∑
h:homA(x,z)

hom2
A(f, g; h)

18/28

Literate, explicit, visual!

Literate formalisations

The main purpose of Rzk is to support formalisations for synthetic ∞-categories.

However, I believe it is important to try making formalisations understandable for the
reader, not just easy to use for the writer.

To this end, Rzk supports literate programming, and current formalisations are mostly
Markdown files with rzk code blocks.

This means that formalisations are more easily browsable, for examples see:

• Rzk documentation at https://fizruk.github.io/rzk/
• Yoneda lemma formalisation project at

https://emilyriehl.github.io/yoneda/
• simplicial HoTT formalisation project at

https://fizruk.github.io/sHoTT/
19/28

https://fizruk.github.io/rzk/
https://emilyriehl.github.io/yoneda/
https://fizruk.github.io/sHoTT/

Automatic visualisation

Since many formalisations have a natural accompanying visualisation in a form of
commutative diagrams, Rzk implements some basic automatic rendering for topes,
simplicial types and terms.

20/28

Explicit assumptions

Rzk supports Coq-style sections and variables, with one important distinction: implicit
use of variables is not allowed.

1 #variables A B C : U
2 #variable f : A -> B
3 #variable g : B -> C
4 #variable x : A
5

6 -- #def bad-compose : C := g (f x)
7 -- ERROR: implicit assumptions A and B
8

9 #def compose uses (A B) : C := g (f x)

See https://fizruk.github.io/rzk/site/rzk-1/sections/ for details.
21/28

https://fizruk.github.io/rzk/site/rzk-1/sections/

Formalising simplicial HoTT

Why formalize mathematics? (one example)

How I became interested in foundations of mathematics (2014)
[V.Voevodsky] …in 2003, twelve years after our proof was published in English,
a preprint appeared on the web in which his author, Carlos Simpson, very po-
litely claimed that he has constructed a counter-example to our theorem.
…And then in the Fall of 2013, less than a year ago, some sort of a block in
my mind collapsed and I suddenly understood that Carlos Simpson was correct
and that the proof which Kapranov and I published in 1991 is wrong.
Not only the proof was wrong but the main theorem of that paper was false!
…
…if it were a complex equation we would probably have checked it on a com-
puter.
So why can not we check a solution which is a proof of a theorem?

22/28

Formalising the Yoneda Lemma

The project is a collaboration with Emily Riehl and Jonathan Weinberger.

One goal of the project is to formalise the Yoneda lemma for synthetic ∞-categories
following the original paper (Riehl and Shulman 2017).

1 #def Yoneda-lemma
2 (funext : FunExt)
3 (A : U) -- The ambient type.
4 (AisSegal : isSegal A) -- A proof that A is Segal.
5 (a : A) -- The representing object.
6 (C : A -> U) -- A type family.
7 (CisCov : isCovFam A C) -- A covariant family.
8 : isEquiv ((z : A) -> hom A a z -> C z) (C a) (evid A a C)
9 := ((yon A AisSegal a C CisCov,

10 yon-evid A AisSegal a C CisCov funext),
11 (yon A AisSegal a C CisCov,
12 evid-yon A AisSegal a C CisCov))

See more details at https://github.com/emilyriehl/yoneda 23/28

https://github.com/emilyriehl/yoneda

Formalising the Yoneda Lemma: comparing with other proof assistants

The project is a collaboration with Emily Riehl and Jonathan Weinberger.

Another goal is to compare the proof of the Yoneda lemma for ∞-categories in
simplicial HoTT with proofs of the Yoneda lemma for 1-categories in other proof
assistants. Sina Hazratpour has contributed formalisations in Lean to that end.

See more details at https://github.com/emilyriehl/yoneda 24/28

https://github.com/emilyriehl/yoneda

Fixing a proof

Recently, Rzk helped find an bug in a proof of Riehl
and Shulman 2017, Proposition 8.13.
Luckily, the proof could be fixeda in a non-trivial (for
me), but fairly straightforward way.

ahttps://github.com/emilyriehl/yoneda/pull/6

25/28

https://github.com/emilyriehl/yoneda/pull/6

What’s next?

Future work: improving Rzk language

1. convenient syntax;
2. shape types;
3. user-defined cubes and topes;
4. user-defined (higher) inductive types;
5. type inference based on (Kudasov 2023);
6. implicit parameters, auto bound arguments à la Lean;

26/28

Future work: improving Rzk tools

1. Rzk InfoView for VS Code;
2. Automatic documentation with rich source code highlighting and diagrams;
3. Interactive diagrams?

27/28

Future work: formalisation

1. Complete formalisation of (Riehl and Shulman 2017);
2. Formalise synthetic fibered ∞-categories (Buchholtz and Weinberger 2023);
3. Explore formalisations of cubical, globular type theories.

28/28

Thank you!

28/28

References i

Abramsky, Samson and Bob Coecke (2009). “Categorical Quantum Mechanics”. In:
Handbook of Quantum Logic and Quantum Structures. Ed. by Kurt Engesser,
Dov M. Gabbay, and Daniel Lehmann. Amsterdam: Elsevier, pp. 261–323. doi:
https://doi.org/10.1016/B978-0-444-52869-8.50010-4.
Baez, John C. and Blake S. Pollard (2017). “A compositional framework for
reaction networks”. In: Reviews in Mathematical Physics 29.09, p. 1750028. doi:
10.1142/S0129055X17500283. eprint:
https://doi.org/10.1142/S0129055X17500283.
Buchholtz, Ulrik and Jonathan Weinberger (2023). “Synthetic fibered
(∞, 1)-category theory”. In: Higher Structures 7 (1), pp. 74–165. arXiv:
2105.01724 [math.CT].

https://doi.org/https://doi.org/10.1016/B978-0-444-52869-8.50010-4
https://doi.org/10.1142/S0129055X17500283
https://doi.org/10.1142/S0129055X17500283
https://arxiv.org/abs/2105.01724

References ii

Coecke, Bob, Mehrnoosh Sadrzadeh, and Stephen Clark (Mar. 2010).
“Mathematical Foundations for a Compositional Distributional Model of Meaning”.
In: Lambek Festschrift Linguistic Analysis 36.
Fong, Brendan and David I Spivak (2018). Seven Sketches in Compositionality: An
Invitation to Applied Category Theory. arXiv: 1803.05316 [math.CT].
Kudasov, Nikolai (2023). E-unification for Second-Order Abstract Syntax. To
appear in FSCD-2023. arXiv: 2302.05815 [cs.LO].

https://arxiv.org/abs/1803.05316
https://arxiv.org/abs/2302.05815

References iii

Licata, Daniel R. and Robert Harper (2011). “2-Dimensional Directed Type
Theory”. In: Electronic Notes in Theoretical Computer Science 276. Twenty-seventh
Conference on the Mathematical Foundations of Programming Semantics (MFPS
XXVII), pp. 263–289. issn: 1571-0661. doi:
https://doi.org/10.1016/j.entcs.2011.09.026. url:
https://www.sciencedirect.com/science/article/pii/
S1571066111001174.
Riehl, Emily and Michael Shulman (2017). “A type theory for synthetic
∞-categories”. In: Higher Structures 1 (1). arXiv: 1705.07442 [math.CT].
Swierstra, Wouter (2008). “Data types à la carte”. In: Journal of Functional
Programming 18.4, pp. 423–436. doi: 10.1017/S0956796808006758.

https://doi.org/https://doi.org/10.1016/j.entcs.2011.09.026
https://www.sciencedirect.com/science/article/pii/S1571066111001174
https://www.sciencedirect.com/science/article/pii/S1571066111001174
https://arxiv.org/abs/1705.07442
https://doi.org/10.1017/S0956796808006758

	Synthetic theories and proof assistants
	Synthetic -categories and Rzk language
	Literate, explicit, visual!
	Formalising simplicial HoTT
	What's next?
	Appendix

