
Efficient and effective symbolic execution:
technologies overview

Sergey Morozov
morozov.serg901@gmail.com

Aleksandr Misonizhnik
misonijnik@gmail.com

June 28, 2023



Automatic Program Analysis

We want a tool, that will be able to find vulnerabilities in a given
source code

2 / 39



Approaches to Program Analysis

• Abstract interpretation is useful for verifying safeness, but not
always be efficient

• Fuzzing is very good at finding edge cases, but it can miss
certain types of bugs

• ...
• There are very fast static analysis approaches, but

not very accurate

3 / 39



Symbolic Execution Approach

• Symbolic execution is a very precise technique, but accuracy
comes at the cost of time

• Core idea — explore all possible program behaviours

4 / 39



Symbolic Execution: General ideas

• Introduces a symbolic
variable

• Constructs logical formulas
• Checks satisfiability with

SMT-solver
• For each state achieved

endpoint generates a set of
values for symbolic variables

int main() {
int x = symbolic();
if (x > 0) {

return 0;
}
return 1;

}

5 / 39



Classic Symbolic Execution: Algorithm

Qfront := {s};
while Qfront ̸= ∅ do

s :=
searcher.pick(Qfront);

Qfront := Qfront \ {s};
forall
s ′ ∈ execInstr(s.curr , s)
do

if isSAT(s ′.pc) and
checkBound(s ′)

Qfront :=
Qfront ∪{s ′};

• Key points:
• path selection heuristic

(searcher.pick)
• program execution modelling

(execInstr)
• logic solver (isSAT)

• Improvements can be made in each
of the key points to achieve
acceptable performance for
production use

6 / 39



Path Selection

Qfront := {s};
while Qfront ̸= ∅ do

s :=
searcher.pick(Qfront);

Qfront := Qfront \ {s};
forall
s ′ ∈ execInstr(s.curr , s)
do

if isSAT(s ′.pc) and
checkBound(s ′)

Qfront :=
Qfront ∪{s ′};

Responsible for choosing state for
execution
Each state can be represented as a vertex
in Control Flow Graph
To traverse graph efficiently engine may
use different algorithms:
• DFS
• BFS
• Random Walk
• Weighted Random Walk
• ...

7 / 39



Path Selection

• Affects completeness of analysis
• Not every algorithm can be used effectively

8 / 39



Paths Selection: Does it work?

In most cases. But not well:
int foo(int x) {

int y = 0;
for (int i = 0; i < x; ++i, ++y) {}
if (y == 250) { printf("y == 250");}
return y;

}
Execution with any searcher stucks in for-loops

9 / 39



Path Selection: Guided mode

• But what if we try to analyse entire graph?
• We could guide execution to the interesting targets

10 / 39



Path Selection: Guided Mode

Introduce a guided searcher that manages many targeted
searchers
• Each targeted searcher manages its own set of states and choose

states that will likely achieve target
• By default states does not have targets
• But if state without target passes same instruction many times,

guided searcher will calculate a target to it
• If target has been reached or target can not be reached, then

state loses target

11 / 39



Path Selection: Targeted Searchers

Manages set of states with the same target
• If target is in the same function, calculates distance as number

of instructions
• Otherwise, calculates shortest path in the call graph with

transitions on call’s and return’s

12 / 39



Path selection: it works faster!

int foo(int x) {
int y = 0;
for (int i = 0; i < x; ++i, ++y) {}
if (y == 250) { printf("y == 250");}
return y;

}
With Guided Mode it works almost 5 time faster!

13 / 39



Path Selection: open problem

void f(int n, int k) {
while (true) {

if (n == 50 && k <= 50)
return;

}
}

void g(int n, int k) {
for (int i = 0; i < 100; i++) {

for (int j = 0; j < 100; j++) {
if (n == i && k == j)

f(n, k);
}

}
}

• However, does not work
always

• Suppose, we want to analyse
function g

• With our approach it will
hang

14 / 39



Memory Model

Qfront := {s};
while Qfront ̸= ∅ do

s :=
searcher.pick(Qfront);

Qfront := Qfront \ {s};
forall
s ′ ∈ execInstr(s.curr , s)
do

if isSAT(s ′.pc) and
checkBound(s ′)

Qfront :=
Qfront ∪{s ′};

• Important part for analysis for any
language with dynamic memory
allocations

• One of the sources of developers
errors

• Out Of Bound
• Null Pointer Dereferences
• Uses After Free
• ...

• Therefore we need to maintain
correct memory representation for
each stat

15 / 39



Memory Model

bool buf[CHAR_BIT];
for (int i = 0; i <= CHAR_BIT; ++i) {

buf[i] = 0;
}
We may see a typical out-of-bound error on line buf[i] = 0;

16 / 39



Memory Model:

Address space in a program may be represented as a contiguous
segment with objects inside

08

A

2432

B

37

The main operation in memory is a pointer resolution. It maybe
either:
• Concrete
• Symbolic

17 / 39



Memory Model: Pointer Resolution

• Resolution of symbolic pointer looks over all objects in
memory which can be referred by it and forks initial state with
reads and writes in that objects

• We may see at least 2 problems:
• Performance
• Completeness

18 / 39



Pointer Resolution: Performance

int main() {
float a;
short b;
int d;

int *x = symbolic();
*x = 10;

}
As pointer can be dereferred in every object, we will create lots of
additional execution states

19 / 39



Pointer Resolution: Why is it that slow?

• In example before we have dereffered int* to float’s
• Do we really want to explore such behaviours?
• Idea: what if we restrict resolution with type information?

20 / 39



Memory Model: Type Information

• It is language specific information
• In C we have Strict Aliasing Rule and concept of objects

Effective Type

21 / 39



Memory Model: Type Information

During pointer resolution we may also compare types of objects with
the type of pointer in order to filter non-suitable ones
int main() {

float a;
short b;
int d;

int *x = symbolic();
*x = 10;

}
With type system this example works almost 2 times faster

22 / 39



Memory Model: Completeness
What if we want to analyze recursive data structures?
struct Node {

struct Node *next;
};
int len(struct Node *node) {

if (node == NULL) {
return 0;

}
return 1 + len(node->next);

}
int main() {

struct Node node = symbolic();
if (len(&node) > 1) { printf("len is %d 1!\n", len(&node)); }

}

Classic symbolic execution will generate lists with 1 nodes, may be
with reference to itself

23 / 39



Memory Model: Lazy Initialization

Idea: allocate additional object!
• Even if the symbolic pointer points to nowhere, allocate an

additional object with error report
• Symbolic pointer becomes address of allocated object
• Also we need to add logical constraints to prevent objects

intersections in form of

base ≤ ptr ∧ ptr + bytes ≤ base + size

24 / 39



Memory Model: Lazy Initialization

It works!
struct Node {

struct Node *next;
};
int len(struct Node *node) {

if (node == NULL) {
return 0;

}
return 1 + len(node->next);

}
int main() {

struct Node node = symbolic();
if (len(&node) > 1) { printf("len is %d 1!\n", len(&node)); }

}

25 / 39



Lazy Initialization: a problem

• To have correct memory model we must add constraints on
non-intersections with every object for every lazy initialized
object

• Otherwise we might receive memory model with different
objects at one address

• Such constraints affect performance
• (Additionally) We do not know exact size of allocated object

To understand the problem, we will talk about solvers

26 / 39



Solvers: Satisfiability Modulo Theories

Qfront := {s};
while Qfront ̸= ∅ do

s :=
searcher.pick(Qfront);

Qfront := Qfront \ {s};
forall
s ′ ∈ execInstr(s.curr , s)
do

if isSAT(s ′.pc) and
checkBound(s ′)

Qfront :=
Qfront ∪{s ′};

• SMT-solvers are widely used in
symbolic execution

• Used to solve logical formulas
• Formulas consist of logical

theories
• BitVectors
• Arrays
• Linear Integer Arithmetic
• ...

27 / 39



Solvers: SMT sounds good, right?

But
• SMT is an NP-hard problem
• Number and complexity of constraints affects solvers decising

abilities
• Therefore, we should load the solver as little as possible

28 / 39



Lazy Initialization affects solvability

• Each lazy initialization adds conjunction of O(n) constraints
where n is the number of objects in the memory

• Problem — address space is a complex domain
• How we can even model complex domains?
• What if we make symbolics more concrete?

29 / 39



Symcretes infrastructure

We may delegate responsibility for generating values for symbolic
variables to more light-weight algorithms then SMT-solvers.
Therefore, we may use ideas of symcrete execution
• Symcrete = symbolic + concrete
• Match symbolics with concrete values
• Allows to maintain a correct model

30 / 39



Symcretes overview

Symcretization approach: symcrete addresses and symcrete sizes

Symbolic
Memory Logic Solver

Recalculate
concrete values

if need

Recalculate
memory objects

if need

Check path constraints

Get valid response or invalid response
with new concrete values

31 / 39



Symcretes machinery: solver

Managed with Concretizing solver
• Uses provided algorithms to generate solution for symcretes
• Modifies each query with equalities over symcrete variables

• i.e. constraint x < y with symcretes (x = 2), (y = 1) will transform
into x < y ∧ x = 2 ∧ y = 1

• Such modifications may affect formulas satisfiability. If so,
remove all equalities over symcretes that affected validity

• In example above we may remove x = 2 ∧ y = 1

• This is done by looking into unsatisfiability core

32 / 39



Symcretes machinery: memory

• With symcretes infrastructure we may control values of symbolic
addresses with symcretes

• Moreover, we may maintain objects of symbolic size, as we are
able to maintain correct model for all symbolic variable now

• “Solver” for addresses – allocator
• malloc(size_t) function, for instance

33 / 39



Advantages of symcretes

• Simpler formulas for logic solver
• Most optimizations with objects of a concrete size continue to

work with objects of symbolic size
• Try to keep the concrete sizes of the object as small as possible

34 / 39



Logic Solver: another optimizations and improvements

In order to work better with new functionality we’ve also made
several optimizations:
• Use sparse storage for formula models
• Use interning of symbolic expressions to compare ones in

constant time
• Support for queries to the solver to get an unsatisfiable core
• Cache all solver results to decrease time-consuming

35 / 39



Our Approach: KLEE-based implementation

• Our implementation is based on the
KLEE symbolic execution engine

36 / 39



Current and Future Work

• Combining fuzzing and symbolic execution: using a fuzzy solver
based on the libAFL fuzzer for exploring code with external
function calls

• Combining static analysis and symbolic execution
• Combining reachability analysis and symbolic execution:

bidirectional symbolic execution

37 / 39



Conclusion

• We have described approaches to automatic program analysis
and, in particular, symbolic execution

• We have presented our approaches to make effectivity and
effectiveness of symbolic execution, including

• Guided mode for path selection
• Type system and lazy initialization for work with memory
• Symcretes approach to deal symbolic variables with complex domain

• Finally, we have discussed our ongoing and future work,
including bidirectional symbolic execution, combining fuzzing
and symbolic execution, and combining static analysis and
symbolic execution

38 / 39



Articles

• MISONIZHNIK A. V. et al. Automated testing of LLVM
programs with complex input data structures //Proceedings of
the Institute for System Programming of the RAS (Proceedings
of ISP RAS). – 2022. – Т. 34. – №. 4. – С. 49-62.

• (To be published) MOROZOV S. A. et al. “Symcrete” memory
model with lazy initialization and objects of symbolic sizes in
KLEE (link)

39 / 39

http://syrcose.ispras.ru/2023/submissions/SYRCoSE_2023_paper_2359.pdf

	Introduction
	Structure
	Memory Model
	Solvers

