Как решить рекурсивное уравнение

Николай Вячеславович Шилов
(выступление на «Дне пробоем-2023»
семинара STEP-2023, 30 декабря 2023 г.)

Sample Olympiad problem \& answer

- Let \boldsymbol{Z} be the set of integers. Determine all functions $f: \boldsymbol{Z} \rightarrow \boldsymbol{Z}$ such that, for all integers a and $b, f(2 a)+2 f(b)=f(f(a+b))$.
- The problem can be solved using classical monadic recursion elimination technique known in Theoretical Computer Science since late 1960: $f(x)=2 x+$ const.

Problem via recursion elimination

- A classic example monadic recursion elimination by reduction to the tail recursion is a so-called John McCarthy function $M_{91}: N \rightarrow N$:

$$
M_{91}(n)=\text { if } n>100 \text { then }(n-10) \text { else } M_{91}\left(M_{91}(n+11)\right) .
$$

- It was introduced by John McCarthy, studied by Zohar Manna, Amir Pnueli, Donald Knuth. It turns out that

$$
M_{91}(n)=\text { if } n>101 \text { then }(n-10) \text { else } 91 .
$$

Problem via recursion elimination

- A "key" idea elimination is a move from a monadic function $M_{91}: N \rightarrow$ \boldsymbol{N} to a binary function $M 2: \boldsymbol{N} \times \boldsymbol{N} \rightarrow \boldsymbol{N}$ such that for all $n, k \in \boldsymbol{N}$

$$
M 2(n, k)=\left(M_{91}\right)^{k}(n)
$$

where $\left(M_{91}\right)^{k}(n)$ is k-time application of the function, i.e.:

- $\left(M_{91}\right)^{k}(n)=M_{91}\left(\ldots M_{91}(n) \ldots\right)$,
- $M 2(n, 0)=\left(M_{91}\right)^{0}(n)=n$ for all $n \in \boldsymbol{N}$.

Why to solve recursive equations?

- To contribute to IMO Grand challenge
- To test compilers for functional languages (as M_{91})
- To optimize recursion implementation via recursion elimination
- To make level of program languages higher (by implicit functions)

A fresh Olympiad problem and its programming interpretation

- Let \boldsymbol{Q}^{+}be the set of positive rational numbers.
- Problem: Determine all functions $f: \boldsymbol{Q}^{+} \rightarrow \boldsymbol{Q}^{+}$such that, for all positive rational a and b holds $f(a f(b))=f(a) / b$.
oInterpretation: Implement a function $f: \boldsymbol{Q}^{+} \rightarrow \boldsymbol{Q}^{+}$that is not a constant such that, for all positive rational a and b holds $f(a f(b))={ }^{f(a)} / b$.

